摘要 在人工智能的发展趋势下,生物识别已成为一种广泛应用的热门技术,在金融、非营利组织、海关等各种场合均有应用,但传统的身份识别工具存在易被泄露、窃取或遭受黑客攻击的风险。脑电图(EEG)是生物识别研究的一种方法,它通过采集头皮特定位置的电磁波来反映个体的脑部活动,大量研究证明脑电图中的α波段可以区分个体差异,其重要性在临床神经生理中也得到了证实。在脑电生物识别中,大多数研究使用复杂的电极通道来覆盖整个头部来收集脑电波记录,但这样的设备无法满足生物识别应用对可采集性的要求。
I.近年来,生物识别技术在日常生活中越来越多地使用。例如,在使用图形和面对图像登录智能手机中。但是,这种生物特征数据始终涉及身体表面。因此,可以使用数字设备(例如摄像机)轻松地被盗(捕获)。If the data are stolen, copies can be made.此外,填充和脸部识别假定仅一次性身份验证,这会导致SPOOFG的风险。使用其生物识别技术对系统的常规用户进行身份验证,即使用户被没有使用该系统许可的冒名顶替者替换,也无法根据一次性的身份验证使用生物识别方法检测SPOOFEF。为了解决这个问题,已经提出了连续的身份验证,因为它比一次性的身份验证更有效。作为适合连续身份验证的生物识别技术,脑波或脑电图(EEG)引起了人们的注意[1]。只要人还活着,信号总是会产生,因此可以连续测量此信息。此外,由于任何人都可以利用脑波,它们是最容易获得的生物识别数据。由于仅在人戴上脑波传感器时才能检测到脑波,因此其他人也无法秘密地窃取数据。但是,传统研究并未提及使用脑电波作为生物识别技术的应用。使用脑波需要用户佩戴脑波传感器,但是这需要时间,因为用户在移动头发的同时将许多电极设置在头皮上。例如,当用户输入房间,登录PC或使用ATM时,这是无法想象的。因此,作为生物识别技术的脑波不适用于一次性身份验证。另一方面,一旦用户佩戴
摘要 - 每年,数以百万计的患者在手术过程中恢复意识,并可能患有创伤后疾病。我们最近表明,可以使用脑电图(EEG)信号的中位神经刺激过程中的运动活动检测来提醒医务人员,患者正在醒来并试图在全身麻醉下移动[1],[2]。在这项工作中,我们测量了直接训练对过滤的EEG数据进行训练的多种深度学习模型(EEGNET,深卷积网络和浅卷积网络)的运动图像的准确性和假阳性。我们将它们与有效的非深度方法进行了比较,即基于常见空间模式的线性判别分析,即应用于协方差矩阵的Riemannian Mean Mean Algorithm的最小距离,基于逻辑回归的逻辑回归,这是基于逻辑回归的,这是对协方差矩阵(TSS+LR)的较相关的空间投影。与其他分类器相比,EEGNET显着提高了分类性能的显着提高(p-值<0.01);此外,它的表现优于最佳的非深度clas-sifier(TS+LR),其精度为7.2%。这种方法有望改善全身麻醉期间术中意识检测。
摘要:近几十年来,脑机接口 (BCI) 的研究变得更加民主,使用基于脑电图 (EEG) 的 BCI 的实验急剧增加。协议设计的多样性和对生理计算日益增长的兴趣要求同时改进 EEG 信号和生物信号(如皮肤电活动 (EDA)、心率 (HR) 或呼吸)的处理和分类。如果一些基于 EEG 的分析工具已经可用于许多在线 BCI 平台(例如 BCI2000 或 OpenViBE),那么在线使用算法之前,执行离线分析以设计、选择、调整、验证和测试算法仍然至关重要。此外,研究和比较这些算法通常需要编程、信号处理和机器学习方面的专业知识,而许多 BCI 研究人员来自其他背景,对这些技能的培训有限或没有培训。最后,现有的 BCI 工具箱专注于 EEG 和其他脑信号,但通常不包括其他生物信号的处理工具。因此,在本文中,我们描述了 BioPyC,这是一个免费、开源且易于使用的 Python 平台,用于离线 EEG 和生物信号处理和分类。基于直观且引导良好的图形界面,四个主要模块允许用户遵循 BCI 过程的标准步骤,而无需任何编程技能:(1)读取不同的神经生理信号数据格式,(2)过滤和表示 EEG 和生物信号,(3)对它们进行分类,以及(4)可视化并对结果进行统计测试。我们在四项研究中说明了 BioPyC 的使用,即根据 EEG 信号对心理任务、认知工作量、情绪和注意力状态进行分类。
结果:1。MC中的分形维度(Higuchi的分形维度(HFD))往往高于所有阶段VS/UWS患者的分形维度(HFD),仅在醒来阶段存在显着差异(P <0.05)。醒来阶段的HFD与CRS-R评分呈正相关,并以88.3%的诊断精度表现出最高的诊断精度。与VS/UWS中的Teager-Kaiser能量运营商(TKEO)在MCS中的患者水平也更高,在NREM2阶段(p <0.05)中,与CRS-R-R分数和诊断精度为75.2%,在NREM2阶段中显着。MCS患者中的δ -band功率频谱密度[PSD(δ)]低于VS/UWS中的患者,在唤醒阶段明显如此明显(P <0.05),并且与CRS -R分数呈负相关,诊断精度为71.5%。
神经元产生电信号,通过突触传输到其他细胞。首先,动作电位 (AP) 到达突触间隙(图 1 中的步骤 1),在那里它将通过神经递质传输化学信息(图 1 中的步骤 2),从而产生突触后电位 (PSP) 和局部电流(图 1 中的步骤 3)。PSP 将产生电流接收器并传播直到细胞体以产生电流源(图 1 中的步骤 4)。因此,PSP 会产生一个由负极(即接收器)和正极(即源)组成的电偶极子。该偶极子将产生初级(细胞内)电流和次级(细胞外)电流。M/EEG 信号来自突触后电位。更具体地说,M/EEG 信号来自大量同步神经元活动的空间和时间总和。但 MEG 和 EEG 之间存在显著差异。首先,就信号本身而言,MEG 信号主要由树突水平的 PSP 产生的细胞内电流引起,细胞外电流较少;EEG 信号对应于电位差,主要由细胞外电流引起。其次,就对偶极子方向的敏感性而言,EEG 对径向电流(位于脑回水平的活动)和切向电流(在脑沟内产生)都很敏感,尽管它具有
摘要 简介:性取向是否是一种具有神经功能足迹的生物学特征尚不清楚。借助深度学习,无需先验选择特征即可对生物数据集进行分类的能力已大大提高。本研究的目的是使用深度学习正确分类不同性取向男性的静息态脑电图 (EEG) 数据,并探索识别所学区别特征的技术。方法:使用三个队列(同性恋男性、异性恋男性和混合性别队列)、一个预先训练的性别分类网络和一个新训练的性取向分类网络对性别进行分类。此外,还使用 Grad-CAM 方法和源定位来识别网络用于区分的时空模式。结果:使用预先训练的网络对男性和女性进行分类,男性和女性的分类之间没有差异
本文档中包含的信息已仔细检查,并已尽一切努力确保其质量。PLUX 保留随时更改和改进本手册和所引用产品的权利,恕不另行通知。蓝牙一词及其徽标是 Bluetooth SIG Inc. 的商标,任何此类商标的使用均已获得许可。其他商标均为其各自所有。请在收到系统和传感器后首次使用前检查系统和传感器,以确认其是否包含所有订购的传感器、配件和其他组件。如果与原始订单有任何差异,请通过电子邮件联系我们的支持人员:helpdes@pluxbiosignals.com。有关监管信息,请参阅本文档末尾的监管免责声明。
不平衡的数据集对神经科学、认知科学和医学诊断等领域构成了重大挑战,在这些领域中,准确检测少数类别对于稳健的模型性能至关重要。本研究以 DEAP 数据集中的“喜欢”标签为例,解决了类别不平衡问题。这种不平衡经常被先前的研究忽视,这些研究通常侧重于更平衡的唤醒和效价标签,并主要使用准确度指标来衡量模型性能。为了解决这个问题,我们采用了旨在最大化曲线下面积 (AUC) 的数值优化技术,从而增强了对代表性不足的类别的检测。我们的方法从线性分类器开始,与传统的线性分类器(包括逻辑回归和支持向量机 (SVM))进行了比较。我们的方法明显优于这些模型,召回率从 41.6% 提高到 79.7%,F1 分数从 0.506 提高到 0.632。这些结果强调了通过数值优化实现 AUC 最大化在管理不平衡数据集中的有效性,为提高在样本外数据集中检测少数但关键类别的预测准确性提供了有效的解决方案。
摘要 — 深度学习在计算机视觉领域的成功启发了科学界探索新的分析方法。在神经科学领域,特别是在电生理神经成像领域,研究人员开始探索利用深度学习来预测他们的数据,而无需进行广泛的特征工程。本文使用两种不同的深度卷积神经架构比较了使用经过最低限度处理的 EEG 原始数据的深度学习与使用 EEG 光谱特征的深度学习。其中一个来自 Putten 等人 (2018),专门用于处理原始数据;另一个来自 VGG16 视觉网络 (Simonyan and Zisserman, 2015),旨在处理 EEG 光谱特征。我们应用它们对来自 1,574 名参与者的大型语料库的 24 通道 EEG 进行性别分类。我们不仅改进了此类分类问题的最新分类性能,而且还表明在所有情况下,与光谱 EEG 特征相比,原始数据分类可带来更出色的性能。有趣的是,我们表明,专门用于处理 EEG 频谱特征的神经网络在应用于原始数据分类时性能有所提高。我们的方法表明,用于处理 EEG 频谱特征的相同卷积网络在应用于 EEG 原始数据时可产生优异的性能。
