例如,我们与道达尔能源公司达成协议,为其位于诺曼底的贡弗勒维尔炼油厂提供可再生低碳氢气,这是发展可持续氢气工业以实现诺曼底整个工业盆地脱碳的一个例子。供应的可再生氢气将由我们的 PEM (4) 电解器 Air Liquide Normand'Hy 生产,这是有史以来最大的电解器,并将采用我们与西门子能源合资的柏林超级工厂制造的最新一代设备。在荷兰,我们参与了政府支持的大型电解器项目,我们还将在鹿特丹的氢气工厂开发大型二氧化碳捕获装置。这些发展将为荷兰及其邻国的工业脱碳做出重大贡献。
例如,我们与道达尔能源公司达成协议,为其位于诺曼底的贡弗勒维尔炼油厂提供可再生低碳氢气,这是发展可持续氢气工业以实现诺曼底整个工业盆地脱碳的一个例子。供应的可再生氢气将由我们的 PEM (4) 电解器 Air Liquide Normand'Hy 生产,这是有史以来最大的电解器,并将采用我们与西门子能源合资的柏林超级工厂制造的最新一代设备。在荷兰,我们参与了政府支持的大型电解器项目,我们还将在鹿特丹的氢气工厂开发大型二氧化碳捕获装置。这些发展将为荷兰及其邻国的工业脱碳做出重大贡献。
摘要:氢是绿色能源的未来,可再生技术的用途之一是通过电解产生氢。水电解液是氢生产与电源波动之间直接能量相互作用的关键组成部分。最后,即使在相同的电流密度下,激活势也高出80%。这项研究旨在研究I-V的特征以及欧姆和激活潜力对晚期碱性电解酶性能的影响。基本热力学和电化学反应方程用于对晚期碱性电解核进行建模并模拟MATLAB。与针对相同的实验数据集测试的公开模型进行了比较,该模型看起来很完美。关键字:碱性电解核,I-V特性,MATLAB,激活潜力,欧姆电位。
• 2020 年和 2040 年按类型划分的全球平均 H2 生产成本(美元/千克) • 2000 年至 2040 年按国家和地区划分的装机容量和宣布的绿色氢项目管道(兆瓦) • 2020 年至 2040 年宣布的绿色 H2 项目管道(兆瓦) • 32 个宣布的电解槽容量超过 100MW 的项目 • 案例研究:Air Liquide Bécancour • 案例研究:NEOM 绿色氨 • 国家级 LCOH 成本假设 • 电解槽 CAPEX PEM 和碱性 2020 年 - 2040 年(美元/千瓦) • PEM 电解槽 CAPEX 预测,旧的 2019 年 10 月与新的 2020 年 7 月预测,2020 年 - 2040 年(美元/千瓦) • PEM 和碱性电解槽 CAPEX 预测2020 年至 2040 年不同电价和负荷小时数下的绿氢平准成本(美元/千克) • 2019 年和 2030 年各国和技术的可再生能源平准化能源成本(美元/兆瓦时) • 实现低于 30 美元/兆瓦时的可再生电价所需的 2019 年第四季度可再生能源平准化能源成本降低百分比 • 2020 年至 2040 年各国的天然气假定价格(美元/百万英热单位) • 2020 年至 2040 年各国灰氢成本预测(美元/千克) • 现有和已宣布的蓝氢项目清单 • 2020 年至 2040 年各国蓝氢和灰氢成本(美元/千克)
通过电解使用可再生能源产生的绿色氢可用于减少难以浸泡的工业部门的排放。有效的生产和大规模部署需要存储以减轻电解剂降解并确保稳定的氢供应。考虑到电池和电解液的降解,本文探讨了电池和氢系统中电池和氢存储的影响和权衡。利用优化模型,我们检查了整个存储能力和风能配置文件的系统性能和成本。我们的结果表明,电池的短期波动平滑并最大程度地减少电解仪降解,但由于频繁的充电/放电周期而导致的显着降解。相反,氢存储提供长期的能量缓冲,对于持续的氢产生至关重要,但可以增加电解室循环和降解。组合电池和氢存储可增强系统的可靠性,降低组件降解并降低运营成本。这突出了战略存储投资在提高绿色氢系统的性能和成本的重要性。
摘要 . 本研究旨在实施一个优化模型,该模型用于连接重型车辆加油站的制氢设施,用于废物管理和运输领域。该模型由两个连续的混合整数线性规划问题组成。第一个问题解决车辆加油计划问题,第二个问题解决工厂设计和运营问题。该模型的输出是工厂的设计和运行参数以及车辆加油计划,以实现氢气的最低平准成本。研究了电力供应的不同可能性:电网电力、太阳能光伏和水力发电。最有利可图的选择是安装 10 MW 太阳能光伏场,连接 3.3 MW 电解器和 3700 kg 储存器。由此产生的氢气平准成本为 10.24 欧元/千克。如果不考虑售电收入,从电网购买电力成为最具成本效益的选择。这种情况下,电解器和储氢器的大小分别为 760 kW 和 405 kg,氢气的平准化成本为 13.75 欧元/kg。对后一种情况进行的敏感性分析表明,最合理的输入参数是电解器单位消耗和电力成本。还进行了统计分析,考虑了随机故障分布,获得了电解器容量为 700-800 kW 和氢气储氢器大小为 1300-1400 kg 的最佳值。考虑到目前的电价和没有补贴,氢气在能源市场的渗透成本仍然很高。
目前,喀麦隆的电力缺口估计为 50 吉瓦时。这种缺口的特点是频繁甚至长时间停电,扰乱了经济和社会生活。为了克服电力短缺,喀麦隆决定利用其可再生能源潜力生产 3000 兆瓦的电能。事实上,喀麦隆的年太阳辐射量从 4.28 千瓦时/平方米/年到 5.80 千瓦时/平方米/年不等。喀麦隆拥有 2500 万公顷森林,覆盖了其四分之三的领土,是撒哈拉以南非洲第三大生物量潜力国。此外,极北地区牛、山羊、绵羊和猪的饲养活动十分活跃,饲养量达数百万头,产生大量粪便。因此,本文首次使用 HOMER Pro 研究了两种混合系统方案的技术经济可行性,即光伏/燃料电池/电解器/沼气(方案 1)和光伏/电池/燃料电池/电解器/沼气(方案 2),用于马鲁阿市的能源和氢气生产,马鲁阿市被认为是喀麦隆阳光最充沛的地区(极北地区)。本设计结合使用电解器、燃料电池和氢气罐,以减少电池存储需求。本研究考虑了三种类型的家庭用电需求社区(低、中、高消费者)。结果表明,对于低能耗社区,场景 1 的最佳系统架构包括 144 kW 光伏组件、15 kW 沼气发电机、11 kW 转换器、15 kW 电解器、15 kW 燃料电池和 5000 kg 氢气罐,采用循环充电 (CC) 调度策略。对于场景 1 的中等能耗社区,879 kW 光伏组件、15 kW 沼气发电机、31.9 kW 转换器、24 kW 燃料电池、24 kW 电解器和 5000 kg 氢气罐采用 CC 调度策略是最佳混合系统。对于场景 1 的高能耗社区,11,925 kW 光伏组件、15 kW 沼气发电机、570 kW 转换器、266 kW 燃料电池、266 kW 电解器和 25,000 kg 氢气罐采用 CC 调度策略是最佳混合系统。对于场景 2,以下架构是最佳混合系统:对于低消费者,138 kW 光伏模块、15 kW 沼气发电机、27.2 kW 转换器、15 kW 燃料电池、15 kW 电解器、5000 kg 氢气罐和 480 个电池蓄电池,采用 CC 调度策略;对于中等消费者,234 kW 光伏模块、15 kW 沼气发电机、57.8 kW 转换器、24 kW 燃料电池、24 kW 电解器、5000 kg 氢气罐和 1023 个电池蓄电池,采用负载跟踪 (LF) 调度策略;对于高耗能者,820 kW 光伏组件、15 kW 沼气发电机、405 kW 转换器、266 kW 燃料电池、266 kW 电解器、25,000 kg 氢气罐和 9519 个电池储能系统,并采用 CC 调度策略。情景 1 的平准化能源成本 (LCOE) 分别为 0.871 美元/kWh、0.898 美元/kWh 和 1.524 美元/kWh,针对情景 1,氢的平准化成本 (LCOH) 分别为低、中、高消费者社区的 7.66 美元/千克、4.95 美元/千克和 0.45 美元/千克。针对情景 2,氢的平准化成本 (LCOH) 分别为低、中、高消费者社区的 3.06 美元/千克、1.34 美元/千克和 0.15 美元/千克。从优化结果还得出结论,水电解器、燃料电池和氢气罐的组合
– 加速先进水分解技术的研究 – 利用当今的可再生能源和核能 – 通过 H2NEW 联盟在短短 5 年内实现 100 美元/千瓦电解器堆栈目标 – 包括对低温电解 [ LTE](PEM,液体碱性)和高温电解 [HTE](固体氧化物)电解器技术的研究 – 10 亿美元的 BIL 活动现在使电解方面的努力增加了一个数量级,以加速开发 • 长期:利用太阳能或热量更直接地分解水
摘要:该研究基于太阳辐射数据,对单一和混合碱性水电解槽和储能系统进行了绿色氢气生成的技术经济分析。此外,还进行了碳足迹研究,以估算已开发的系统的二氧化碳排放量。碱性水电解槽和储能系统的最佳规模由考虑碳排放碳税的遗传算法确定。根据分项成本估算结果,单一系统和混合系统的单位氢气生产成本分别为 6.88 美元/千克和 8.32 美元/千克。此外,资本成本是确定碱性水电解槽和储能系统最佳规模的关键因素,这对于降低单位氢气生产成本至关重要。最后,考虑到二氧化碳税的上升趋势,需要努力将生产绿色氢气的资本成本降至最低。
摘要:该研究基于太阳辐射数据,对单一和混合碱性水电解槽和储能系统进行了绿色氢气生成的技术经济分析。此外,还进行了碳足迹研究,以估算已开发的系统的二氧化碳排放量。碱性水电解槽和储能系统的最佳规模由考虑碳排放碳税的遗传算法确定。根据分项成本估算结果,单一系统和混合系统的单位氢气生产成本分别为 6.88 美元/千克和 8.32 美元/千克。此外,资本成本是确定碱性水电解槽和储能系统最佳规模的关键因素,这对于降低单位氢气生产成本至关重要。最后,考虑到二氧化碳税的上升趋势,需要努力将生产绿色氢气的资本成本降至最低。