几乎所有光 - 互动的基本原因是空间和时间上的原子运动。为了提供类似电影的动力学访问,我们将电子显微镜与AttoSond激光技术统一。以这种方式,我们将现代电子束的令人敬畏的空间分辨率与光线周期[1]提供的壮观时间分辨率相结合。选定的结果将报告在超材料内的电场[2-3],爱因斯坦 - de-haas对原子维度的影响[4],相变的反应路径[5]和自由电子Qubit态的形成[6]。通过颠覆性成像技术实现了许多科学和技术的突破,我们的4D电子显微镜可能在原子维度上发挥了轻度相互作用的作用。
更广泛的背景 政府间气候变化专门委员会最近的报告发现,通过开发碳中和和碳负技术实现全球经济脱碳对于实现未来的环境目标至关重要。随着全球二氧化碳排放量接近每年 40 千兆吨,作为更广泛的 Power-to-X 战略的一部分,将二氧化碳转化为由可再生电力驱动的燃料和化学品代表着一种新兴途径,它有可能影响全球产品市场并显著降低碳排放。虽然过去十年二氧化碳转化技术取得了变革性进步,但有关这些技术的经济可行性的许多关键问题仍未得到解答。在本文中,我们确定并围绕五种主要的电力驱动二氧化碳转化技术进行了全面的技术经济分析,涵盖 11 种独特的碳质产品。通过跨多种技术和产品建立一致的技术经济假设,我们可以进行跨途径和跨产品评估。利用这种方法,我们可以确定近期部署二氧化碳转化的有希望的机会,并强调关键的研发需求以及二氧化碳源和激励措施对在与现有市场具有竞争力的价格点上实现长期采用的影响。
本文讨论了在具有静态均匀磁场 B ∗ 的等离子体中用激光脉冲加速电子。激光脉冲垂直于磁场线传播,其极化选择为 (E 激光 · B ∗ ) = 0。本文重点研究具有可观初始横向动量的电子,这些电子由于强烈的失相,在没有磁场的情况下无法从激光中获得大量能量。结果表明,磁场可以通过旋转这样的电子来引起能量增加,从而使其动量变为向前。能量增益在这个转折点之后仍会持续,在此转折点处失相会降至一个非常小的值。与纯真空加速的情况相反,电子会经历快速的能量增加,通过分析得出的最大能量增益取决于磁场强度和波的相速度。磁场增强的能量在高激光振幅(a 0 ≫ 1)下非常有用,此时与真空中的加速度类似的加速度无法在数十微米的范围内产生高能电子。强磁场有助于在不显著增加相互作用长度的情况下增加 a 0。
•沃尔特·科恩(Walter Kohn)的物理学1/3•固体和液体 - 传统定义•硬质和软质 - - - 根据degennes•结构和运输:旧的PRL部门•材料科学和工程的基础•理论在该领域的作用:
由外部信号控制的单个电子的转移首先由 Pothier 等人于 1991 年在具有 3 个铝结的单电子隧穿 (SET) 泵中实现。。该装置产生的电流在标称值 I = ef 的 1/103 以内,其中 e 是基本电荷,f 是泵浦频率。NIST 制造了具有 5 个结 [2] 和 7 个结 [3] 的类似泵,结果显示每个周期的误差分别约为 106 分之 5 和 108 分之 1。在这些装置中,每个电子转移事件都可以通过附近的 SET 晶体管进行监控,因此泵浦的电子实际上可以被“计数”。7 结泵足以用于基础计量,特别是基于计数电子的电容标准 [4]。此类标准于 1998 年首次展示 [5],最近已完成完整的不确定度预算 [6]。过去 10 年,人们的努力并未追求更低的误差率,而是集中于 (1) 了解误差率理论与实验之间的巨大差异 [7–10]、(2) 量化泵用于电容标准时的性能限制 [11],以及 (3) 通过使用更少的结实现相同的误差率来简化泵操作 [12,13]。此外,人们还探索了其他几种可以通过传输单个电子(或超导状态下的库珀对)产生电流的装置。在 [14] 中可以找到对这些方法的广泛(但有些过时)的回顾。请参阅本书 [15] 中 Kemppinen 等人的文章。了解最近的参考资料和对这种新方案的详细讨论。总的来说,这些方法承诺的电流比 SET 泵可能提供的电流大得多,但尚未证明计量所需的精度。本文首先回顾了 SET 泵的操作和错误机制,然后讨论了使用 SET 泵的几个实际方面。目的是让读者了解在计量实验中实施 SET 泵的主要挑战,并
自由电子和光场之间的相互作用构成了一个独特的平台,用于研究物质的超快过程并探索基本的量子现象。具体而言,超快电子显微镜中的光学调制电子作为无创探针,将时空 - 时间 - 能源分辨率推向涂料表 - attosecond-microelectronvolt范围。电子能量远高于所涉及的光子能量,通常使用低电子 - 光线耦合,因此,仅提供有限的量子非线性非线性现象的访问权限,这是纳米结构动态响应的基础。在这里,我们从理论上研究了光子和可比较能量的电子之间的电子光相互作用,揭示了量子和后坐力效应,包括将表面散射电子到光平面波的非散布耦合,无弹性电子反向散射的无弹性电子从受约束的光场进行了散射,并通过强烈的电气 - 光线 - 光线 - 光线 - 光线偶联不足的电子差异不足。我们对电子 - 光 - 物质相互作用的探索有可能在超快电子显微镜中进行应用。
具有多种形态和浓度的电气晶石腔的间质阴离子电子(IAES)可以诱导有趣的物理和化学特性。了解IAES与电子 - Phonon耦合之间的相关性对于新电气超导体的发展至关重要。我们已经应用了第一个主要的结构搜索计算来预测新的高压li-as as tase his电气,例如p 6 / mmm li x as(x = 5和8),li 6,与cmc 2 1 and c 2 / c对称性一样结构对称性和受体物种)以探索与IAE相关的超导性。根据我们的结果,这些电气的预测超导温度与IAES的数量和连通性正相关。
摘要 本文主要回顾了 NIST 在基于电子电荷的电容标准方面取得的进展。我们简要介绍了库仑阻塞,这是允许控制单个电子的基本物理现象,描述了两种类型的单电子隧道 (SET) 设备,并描述了 SET 设备可实现的计量目标和收益。然后,我们讨论了电子计数电容标准 (ECCS):动机、先前对各种关键元素的实验工作、现状和未来前景。最后一部分包括使用 ECCS 来实际表示电容,并指出我们可以在不需要大值电流标准的情况下关闭量子计量三角。最后,我们简要回顾了其他基于 SET 的计量应用。
ifty年前,物理学家发现某些金属化合物包含的电子表现,好像它们比普通电子重得多。这样的重点材料用于探索密切相关的电子系统和非常规的超导性,它们可以在各种量子技术中应用。但是,它们通常需要稀土或actacinide元素,这可能是稀缺,放射性且难以提取的。现在,法国物理与材料研究实验室(LPEM)的Luca de'Medici及其同事提出并测试了一种系统地生产缺乏这些有问题元素的重型材料的方法[1]。