背景:植物病原体,涵盖真菌,细菌,病毒和线虫,通过通过严重的植物疾病造成大量经济损失,对农业领域构成重大威胁。过量使用合成杀菌剂来对抗Phy-topathogen,这引起了环境和人类健康的关注。结果:因此,对安全且环保的生物农药的需求不断增长,以与消费者对未污染食品的偏好保持一致。对合成杀菌剂特别有希望的替代品涉及利用产生细胞外水解酶的生物防治细菌。这些酶有效地管理植物病原体,同时促进可持续的植物保护。在生物防治细菌产生的关键水解酶之间是几丁质酶,纤维素酶,蛋白酶,脂肪酶,葡萄糖酶和淀粉酶。这些酶通过分解植物病原体的细胞壁,蛋白质和DNA来发挥其影响,从而建立了可靠的生物控制方法。结论:认识到这些水解酶在可持续生物防治中的关键作用,本综述旨在深入研究其主要功能,对可持续植物保护的贡献以及作用机制。通过探索生物防治细菌及其酶促机制所呈现的潜力,我们可以辨别有效且对环境意识的策略来管理农业中的植物病原体。
蛋白酶在原核生物和真核生物中都起着无处不在的作用。在植物中,这些酶在多种生理过程中充当关键调节剂,侵蚀性蛋白质瘤,细胞器开发,衰老,播种,蛋白质加工,环境应激反应,环境应激反应和程序性细胞死亡。蛋白酶的主要功能涉及肽键的分解,导致蛋白质的不可逆翻译后修饰。它们还充当信号分子,最终调节细胞活性,分别分裂并激活了脱肽。此外,蛋白酶通过将错误折叠和异常蛋白质降解为氨基酸而导致细胞修复机制。此过程不仅有助于细胞损伤修复,而且还可以调节生物学对环境压力的反应。蛋白酶在植物素的生物发生中也起着关键作用,该植物激素的生长,发育和对环境挑战的反应(Moloi和Ngara,2023年)。现代农业努力满足由于气候变化和人口迅速增长而导致的粮食,饲料和原材料需求的增加。气候变化是对作物产量潜力产生负面影响的主要因素。在植物防御生化机制内部,蛋白水解酶是几种生理过程的关键调节剂,包括环境应激反应。与动物不同,植物不具有带有移动防御者细胞的自适应免疫系统,因此它们具有通过激活触发生理,形态和生化变化的不同保护机制来适应和适应环境条件的策略。
摘要:表观遗传学在慢性疼痛上的作用尚未充分表征。DNA组蛋白甲基化受到从头甲基转移酶(DNMT1-3)和十种二加氧酶(TET1-3)至关重要的调节。证据表明,与伤害感受相关的不同中枢神经系统区域,即背根神经节,脊髓和不同的大脑区域都改变了甲基化标记。在DRG,前额叶皮层和杏仁核中发现了全局甲基化的降低,这与DNMT1/3A表达降低有关。相比之下,TET1和TET3的甲基化水平和mRNA水平升高与炎性和神经性疼痛模型中的增强性疼痛性超敏反应和异常性有关。由于表观遗传机制可能负责慢性疼痛状态中描述的各种转录修饰的调节和协调,因此,通过这项研究,我们旨在评估几个大脑区域中神经性疼痛中TET1-3和DNMT1/3A基因的功能作用。在神经性疼痛的不幸的神经损伤大鼠模型中,手术后21天,我们发现内侧前额叶皮层中的TET1表达增加,并且在尾甲状腺肿和杏仁核中的表达降低。 TET2在内侧丘脑中被上调。内侧前额叶皮层和尾状甲状腺中的TET3 mRNA水平降低;在尾状药物和内侧丘脑中,DNMT1被下调。使用DNMT3A观察到表达的统计学显着变化。我们的结果表明,在神经性疼痛的背景下,这些基因在不同大脑区域中具有复杂的功能作用。DNA甲基化和羟甲基的概念是细胞类型的特定细胞类型,而不是组织特定的,以及在建立神经性疼痛模型后的时间顺序差异基因表达的可能性。
印度尼西亚仍然是世界第二大结核病负担国。抗结核药物的不良反应和依从性可能会影响治疗的成功。本研究的目的是根据肝酶水平的升高定义预测结核病患者依从性的模型。这项纵向研究是前瞻性地使用一线抗结核药物治疗的成年结核病患者进行的。排除了孕妇和患有痛风、糖尿病、肝病和艾滋病毒等并发症的患者。我们测量了治疗后第 2、4 和 6 个月的总胆红素、天冬氨酸氨基转移酶 (AST) 和丙氨酸氨基转移酶 (ALT) 以及依从性。我们使用 ORANGE 数据挖掘作为机器学习来预测依从性。我们招募了 201 名患者,其中男性参与者和年龄不到 61 岁的参与者占主导地位。约有33%、35%和35%的结核病患者胆红素、ALT和AST水平升高。ALT和AST在依从性好和差的人群中有显著差异,尤其是在女性患者中。神经网络和随机森林是最适合预测结核病患者依从性的模型,具有良好的曲线下面积(AUC)。
建立本尼乳杆菌作为鲁棒的生物效果使诸如靶蛋白 /引入酶的产品毒性和蛋白水解降解等问题变得复杂。在这里,我们研究了生物分子冷凝水是否可以用于解决这些问题。我们使用合成模块化支架的瞬时表达在N. benthamiana叶片中设计了生物分子冷凝物。所产生的冷凝物的体内特性与它们是具有多组分相分离系统的热力学特征的液体样物体一致。我们表明,将酶募集到体内冷凝物中导致单步代谢途径和三步代谢途径(柑橘酸盐生物合成和poly-3-羟基丁酸酯(PHB)生物合成)的倍数增加。这种增强的产量可能是出于多种原因,包括改善的酶动力学,代谢产物通道或避免通过在冷凝物内保留途径产物的细胞毒性,这证明了PHB的证明。但是,我们还观察到将其靶向冷凝水的酶累积的数量增加了几倍。这表明将酶定位于冷凝水时比在细胞质中自由扩散时更稳定。我们假设这种稳定性可能是增加途径产品生产的主要驱动力。我们的发现为利用植物代谢工程中的生物分子冷凝物的基础为基础,并推进了本泰米亚纳州,作为工业应用的多功能生物效果。
背景:乳腺癌是一种异质性疾病,其特征是不同的生化,组织学和临床特征。PARP1和糖酵解速率限制酶在癌症进展中起关键作用,使它们成为有前途的治疗靶标。目的:本研究旨在评估乳腺癌患者中PARP1和关键糖酵解酶(HK,PFK和PK)的表达水平,并评估其作为治疗指标的潜力。材料和方法:研究中包括120名参与者(60名乳腺癌患者和60名健康对照组)。血液样本以测量使用ELISA的PARP1表达和糖酵解酶的水平。进行统计分析以比较两组。 结果:与健康对照组相比,乳腺癌患者的PARP1表达和糖酵解酶水平(HK,PFK和PK)明显更高(P <0.0001)。 结论:PARP1和关键糖酵解酶的过表达表明它们参与了乳腺癌的进展,并强调了它们作为治疗靶标和生物标志物的潜力。进行统计分析以比较两组。结果:与健康对照组相比,乳腺癌患者的PARP1表达和糖酵解酶水平(HK,PFK和PK)明显更高(P <0.0001)。结论:PARP1和关键糖酵解酶的过表达表明它们参与了乳腺癌的进展,并强调了它们作为治疗靶标和生物标志物的潜力。
(Volova 等人,2010 年)。与化学表面活性剂不同,生物表面活性剂是一种次级代谢物,为微生物提供有利的环境,使其发挥其重要活性,例如塑料的生物修复(PHA、PE、PET 等)(Bhadra 等人,2022 年)。根据文献,枯草芽孢杆菌和铜绿假单胞菌利用其生物表面活性剂生产能力降解低密度聚乙烯 (LDPE)(Nnaji 等人,2021 年)。在塑料圈微生物群中,除链霉菌外,假单胞菌、葡萄球菌、红球菌、诺卡氏菌、梭菌和肠球菌都预测会产生生物表面活性剂,同时降解合成塑料。然而,大约 50% 的生物表面活性剂产生细菌与塑料降解细菌有关
在所有生物子系统中,免疫系统在DNA编辑酶的使用中都是独一无二的,用于引入靶向基因突变和双链DNA断裂,以使抗原受体基因和战斗病毒感染多样化。这些过程是由特定的DNA编辑酶引发的,通常会导致对启动和驱动癌症的基因组病变的诱导诱导。与其他参与人类健康和疾病的分子一样,免疫系统的DNA编辑酶已经在人类和小鼠中进行了深入研究,几乎没有关注(<1%的已发表研究)对进化较远的物种中相同的酶。在这里,我们从进化的比较透视图中介绍了有关一种DNA编辑酶,激活诱导的胞苷脱氨酶(AID)的特征的文献综述。这篇综述的中心论点是,尽管进化比较方法代表了有关该酶和其他DNA编辑酶的发表著作的很少,但该方法已经对结构生物学,免疫学和癌症研究的领域产生了重大影响。以辅助为例,我们强调了已经做出的发现中进化比较方法的价值,以及在免疫学和蛋白质工程的新兴方向上。我们介绍了蛋白质结构的5维(5D)描述的概念,这是对进化比较研究使结构更加细微的观点。在蛋白质结构的更高维视图中,经典的3维(3D)结构在实时构象和进化时间移位的背景下集成(第4个维度)以及这些动力学与其生物学功能(第5尺寸)的相关性。
乳腺癌发病率正在上升,尤其是在女性中。正在进行的研究重点是寻找这种癌症的有效治疗方法。几个世纪以来,人们一直利用植物的治疗特性,其化学化合物为多种疾病的药物开发提供了启示。这项研究旨在探索苦瓜 (MC) 果实中存在的某些生物活性化合物的潜力,这些化合物已知可以抑制乳腺癌肿瘤的生长。具体来说,该研究利用计算机模拟方法深入研究了它们与与乳腺癌发展有关的关键酶——表皮生长因子受体 (EFGR) 和 nudix 连接的 X-5 部分 (NUDT5) 的相互作用。为此,首先使用 iGemdock、DockThor 和 SwissDock 进行首次评估,并观察到生物活性化合物的结合亲和力。在这三次对接中,化合物 16 (Momordicoside L) 在 EGFR 和 NUDT5 中表现出比标准分子更好的结果。因此,对化合物 16 在 HER2 和 HER3 中的结合亲和力进行了对接,结果显示化合物 16 具有显著的结合亲和力,尤其是对 HER2。结果表明化合物 16 是 EGFR、HER2、HER3 和 NUDT5 的有效抑制剂候选物,为进一步的研究铺平了道路。
草药补充剂,如印度醋栗和姜黄素(源自姜黄),作为 2 型糖尿病的补充干预措施越来越受欢迎。姜黄(Curcuma longa)主要生长在印度,属于姜科植物,因其活性化合物姜黄素而享有盛誉。然而,姜黄素的疏水性导致生物利用度低,必须与脂质载体或其他草药一起给药 (9)。它通过抑制 SREBP1 基因活性和激活 CPT1 和 ACAT 等酶来抑制肝脏脂肪生成,同时促进米色脂肪细胞形成作为肥胖治疗的靶点 (10)。体内研究表明,姜黄素的口服生物利用度在纳米颗粒形式下显著增加 (11)。此外,姜黄素对 2 型糖尿病患者具有抗炎和心脏保护作用 (12)。一些研究表明,姜黄素可改善胰岛素敏感性、血糖水平和血脂状况 ( 13 ),但结果好坏参半,其中一项荟萃分析未发现血脂状况发生显著变化 ( 14 )。不过,另一项研究得出结论,姜黄素对葡萄糖代谢有益,并且可显著降低接受姜黄素治疗的患者的低密度脂蛋白 (LDL) 水平 ( 15 )。值得注意的是,将姜黄素与姜黄精油(姜黄酮)结合使用可增强其抗炎潜力,这表明这些植物化学物质在较低剂量下可更有效地预防和管理疾病,且没有副作用 ( 16 , 17 )。