抽象的分层混合植物(LPK)作为光伏细胞,LED和激光器的稳定性提高,有望作为光伏细胞,LED和激光的3D金属卤化物钙钛矿的替代品或添加剂。然而,这些材料中的高激子结合能意味着激子是许多设备运行条件下的大多数物种。尽管结合LPK的设备的效率一直在增加,但对于这些材料中的激子和自由电荷载体的相互作用仍然未知,这对于理解光电特性如何决定设备的效率是至关重要的信息。在这项工作中,我们采用光泵 / THZ探针光谱(OPTP)和可见的瞬态吸收光谱(TAS)来分析苯基甲基铵铅碘化物(PEA)2 PBI 4的光扣性特性和电荷载体动力学。通过结合这些技术,我们能够从激发子和自由电荷载体中解散贡献。我们观察到在约400 fs的时间尺度上快速冷却自由电荷载体和激子形成,然后在速率常数k 2〜10 9 cm 3 s-1的时间尺度上进行较慢的双分子重组。激子通过两个单分子过程重组,其寿命为t 1〜11 ps和t 2〜83 ps。此外,我们检测出激子的特征 - 瞬态吸收动力学痕迹中的声子耦合。这些发现提供了有关自由电荷接入器和激子之间相互作用的新见解,以及可能进一步了解LPK中的电荷运营商动力学的可能机制。
半导体和绝缘子中价频段的函数的扩散是一种特征性的特性,可以粗略估计材料的绝缘性。我们阐述的是,由于它们等于在动量上集成的价值带状态的量子指标,因此可以从光学电导率和吸光度中从光学电导率和吸光度中从实验中提取量规不变部分。由于量子度量进入光导率的矩阵元素,因此可以从介电函数的假想部分的频率整合中获得价频段散布函数的扩散。我们实际上是为SI和GE等典型的半导体以及拓扑绝缘子(如BI 2 TE 3)进行了证明。在2D材料中,可以从吸光度除以频率,然后在频率上积分的吸光度中获得Wannier函数的扩散。将此方法应用于石墨烯,揭示了由固有的自旋轨道耦合引起的有限扩散,这可以通过微波范围的吸光度检测到。毫米波范围内扭曲的双层石墨烯的吸光度可用于检测板的形成并量化其量子度量。最后,我们将我们的方法应用于六边形过渡金属二进制MX 2(M = MO,W; X = S,SE,TE),并演示了Excitons和Emalligh Energe Bangs(例如Excitons and Emally Energe Bangs)如何影响Strier功能的传播。
激子 - 结合的电子孔对 - 扮演在光结合相互作用现象中的核心作用,对于从光收集和发电到量子信息处理的广泛应用至关重要。固态光学的长期挑战是实现对激发运动的精确和可扩展的控制。我们提出了一种使用纳米结构的栅极电极来创建2D半导体中激子的潜在景观的技术,从而使纳米级的原位波函数启用了原位波函数。我们的方法形成了各种几何形状(例如量子点,环及其阵列)中激子的静电陷阱。我们显示出空间分离的量子点的独立光谱调整,尽管材料障碍,但仍达到了堕落。由于2D半导体中激子的强光耦合,我们观察到光学反射和光致发光测量中受到约束激发波函数的明确特征。这项工作解锁了在纳米尺度上进行启动激子动力学和相互作用的可能性,对光电设备,拓扑光子学和量子非线性光学元件产生了影响。
低阈值光学非线性的潜力在光子学和概念光学神经元网络领域引起了广泛关注。二维 (2D) 半导体中的激子在这方面尤其有前景,因为减少的屏蔽和维度限制会促进它们明显的多体相互作用以实现非线性。然而,对这些相互作用的实验测定仍然不明确,因为光泵浦通常会产生激子和未结合载流子的混合物,其中带隙重正化和载流子屏蔽对激子能量的影响相互抵消。通过比较单层 MoSe 2 光致发光光谱对激子基态和激发态能量的影响,我们能够分别识别中性激子和电荷载流子对库仑结合的屏蔽。当中性激子密度从 0 增加到 4 × 10 11 𝑐𝑚 −2 时,激子基态 ( A-1s ) 和激发态 ( A-2s ) 之间的能量差红移 5.5 meV,而电子或空穴密度增加时则发生蓝移。这种能量差变化归因于中性激子的库仑结合相互屏蔽,从中我们提取出激子极化率为 𝛼 2𝐷
过渡金属二甲化物(TMDS)的扭曲双层揭示了丰富的激子景观,包括混合激子和空间捕获的Moiré激子,占主导地位的材料光学响应。最近的研究表明,在低扭转角度方面,晶格经历了显着的松弛,以最大程度地减少局部堆叠能量。在这里,出现了低能堆叠配置的大域,通过应变使晶格变形,从而影响电子带结构。然而,到目前为止,原子重建对激子能量景观和光学特性的直接影响尚未得到充分了解。在这里,我们采用了微观和材料特异性方法,并预测了重建的晶格中Moiré激子的潜在深度发生了显着变化,并且自然堆叠的TMD TMD同质同层中发生了最大的变化。与刚性晶格相比,我们显示了多个频段的外观,并且捕获位点位置的显着变化。最重要的是,我们预测WSE 2同类体的光学吸收中出现了多发结构 - 与主导刚性晶格的单个峰相比。此发现可以被利用为在天然堆积的扭曲同性恋者中Moiré激子光谱中原子重建的明确特征。
摘要:二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而可以通过后体系修饰来精确地定制材料功能。在这里我们表明,纳米级不均匀性称为纳米泡得很不均匀,可用于菌株,而在双层二硫化物中,激发激子转运的介电调节(WSE 2)。我们使用超敏感的空间分辨的光学散射显微镜直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子的效率上非常有效,即使明亮的激子的能量受到了忽略的影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量 - 间接(黑暗)激子驱动的,这些激动型(黑暗)激子的能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色态能量景观的介电工程进行特殊空间和能量精确的2D半导体中控制激子传输的新途径。主要文本:二维过渡金属二甲藻元化半导体(2D TMD)是范德华的材料,由于其强烈的光 - 含量相互作用,即使在原子上薄的限制下,它们也对纳米级光电构成了巨大的希望。2D TMD的光电特性在很大程度上受其库仑结合的电子孔对(激子)的控制,其结合能相对较大,高达数百个Milli-Electronvolts(MEV),这是由于平面外介电介质筛选而导致的。1–6与自由电荷不同,激子是电荷中性的,因此很难用电子设备中的外部电场来操纵。7–9因此,激子的传输特性在很大程度上取决于随机的扩散运动,没有远程方向性,从而限制了它们作为信息和能量载体的使用。寻找在2D TMD中操纵激子传输的新方法,而不会根本改变其他材料特性,这将产生激子设备,这些设备结合了强烈的光结合,并精确地控制了原子上薄材料中能量和信息流的精确控制。控制2D TMD的特性的一种有吸引力的途径是利用其对菌株,10–21和环境筛查等外在因素的极端敏感性(图1A),5,22-26,实现对光电和运输特性的合成后调节。例如,拉伸应变减少了2D TMD的光学过渡能;因此,16,18,27,28个局部应变区域会产生能量梯度,可以在纳米级低能部位漏洞和捕获激子,该过程被利用以创建长寿命的量子发射器。14,29–33菌株工程很难控制宏观尺度,并且可能引入不良疾病。
激子的基本特性取决于库仑结合的电子和孔的自旋,山谷,能量和空间波形。在范德华材料中,这些属性可以通过层堆叠配置进行广泛设计,以创建具有静态平面外电偶极子的高度可调的层间激子,以牺牲振动性内置偶极偶极子的强度,负责轻度降低光线的振动。在这里我们表明,双层和三层2H-Mose 2晶体中的层间激子与地面(1 s)和激发态(2 s)的电端驱动耦合(2 s)。我们证明,这些独特的激子物种的杂种状态可提供强大的振荡力强度,大型永久性偶极子(高达0.73±0.01 ENM),高能量可调性(高达〜200 meV)以及对旋转和山谷特征的完全控制,因此激子G型可以在较大的范围内操纵ICKITON G-ICTOR。此外,我们观察到双层和三层激发态(2 s)互层激元及其与内部激子态(1 s和2 s)的耦合。我们的结果与具有自旋(层)选择性和超越标准密度功能理论计算的耦合振荡器模型非常吻合,促进了多层2H-MOSE 2作为一个高度可调的平台,可探索与强光相互作用相互作用的Exciton-Exciton相互作用。
3 M. Vladimirova, T. Guillet (poster) Ridge Polariton Laser: Towards a short laser on chip for integration H. Souissi (Oral), T. Guillet, M. Gromovyi, T. Gueye, C. Brimont, L. Doyenne, G. Kreyder, F. Réveret, P. Dwwnix, F. Médard, J. Leymarie, G. Malpuech, D. Solnyshkov, B. Aling, S. Rennesson, F. Semond, J. Zuniga-Spenz, E. Cambril, S. Bouchouule Electrical Control of Excitons in Gan/(al, Ga) n quantum Wells R. Aristagu (Oral), F. Chiaruttini, B. Jouault, P. Lefebvre, C. Brimont, T. Guillet, M. Vladimirova,S。Chenot,Y。Cordier,B。Damilano3 M. Vladimirova, T. Guillet (poster) Ridge Polariton Laser: Towards a short laser on chip for integration H. Souissi (Oral), T. Guillet, M. Gromovyi, T. Gueye, C. Brimont, L. Doyenne, G. Kreyder, F. Réveret, P. Dwwnix, F. Médard, J. Leymarie, G. Malpuech, D. Solnyshkov, B. Aling, S. Rennesson, F. Semond, J. Zuniga-Spenz, E. Cambril, S. Bouchouule Electrical Control of Excitons in Gan/(al, Ga) n quantum Wells R. Aristagu (Oral), F. Chiaruttini, B. Jouault, P. Lefebvre, C. Brimont, T. Guillet, M. Vladimirova,S。Chenot,Y。Cordier,B。Damilano
抽象的二维(2D)半导体材料已被广泛研究其有趣的激子和光电特性,这些特性是由强烈的多体相互作用和在2D极限下的量子限制引起的。这些材料中的大多数都是无机的,例如过渡金属二北元化,磷烯等。有机半导体材料的出色电导率和低介电系数,用于在薄膜或大量材料相中的类似应用。在薄膜和散装相中缺乏结晶度,导致了激子和电子/光节间隙特性的歧义。最近的2D有机材料的出现已经打开了一个高结晶度和受控形态的新领域,从而可以研究低洼的激子状态和光电特性。与无机2D材料中的Wannier -Mott激子相比,它们已被证明具有不同的激子特性。在这里,我们介绍了我们最近对2D有机半导体材料的实验观察结果和分析。我们讨论了单晶材料的高晶和形态控制的生长及其光电特性的作用。该报告解释了有机材料中的Frenkel(FR)和电荷转移(CT)激子以及随后的光发射和吸收特性。实验研究并讨论了源于CT和FR激子之间的相互作用,这是由CT和FR激子之间的相互作用产生的,以揭示电子带的结构。然后,我们讨论我们在J型聚集的有机材料中观察到的纯FR行为,从而导致连贯的超级激体排放。在有机材料中,激发子的超级转移,由其纯粹的fr性质促进,以及在大量分子上的激子的离域化。最后,我们讨论了这些有机2D材料的应用和视力,在快速有机发光二极管,高速激发电路,量子计算设备和其他光电设备中。
摘要:具有原子级精确宽度和边缘结构的石墨烯纳米带 (GNR) 具有半导体特性和高载流子迁移率,是一类很有前途的光电子纳米材料。了解 GNR 中载流子产生的基本静态光学特性和超快动力学对于光电应用至关重要。结合太赫兹光谱和理论计算,我们报告了液相分散 GNR 中强激子效应,结合能高达 ∼ 700 meV,宽度为 1.7 nm,光学带隙为 ∼ 1.6 eV,说明了光生电子和空穴之间固有的强库仑相互作用。通过跟踪激子动力学,我们发现 GNR 中激子的超快形成具有超过 100 ps 的长寿命。我们的研究结果不仅揭示了 GNR 中激子的基本方面(强结合能和超快激子形成等),而且还突出了 GNR 在光电器件中的良好性能。关键词:石墨烯纳米带、激子、激子形成、激子结合能、太赫兹光谱 ■ 简介