关于遗传和环境对大脑功能影响的研究通常侧重于大脑区域之间的联系。一种不同但尚未探索的方法是检查局部大脑区域内的活动。我们研究了基因和环境效应对局部大脑功能的两个特定指标的影响:区域同质性 (ReHo) 和低频波动分数振幅 (fALFF)。参与者两次从青少年双胞胎样本中抽取(平均年龄分别为 11.5 岁和 13.2 岁,N = 278 和 248)。结果表明,遗传和环境因素影响了几乎所有 210 个皮质区域的大脑功能。此外,影响第一波(9-14 岁)ReHo 和 fALFF 值的遗传和常见环境因素也影响了许多区域第二波(10-16 岁)的值。然而,遗传和常见环境因素的影响在整个皮质中各不相同,在不同区域表现出不同的模式。此外,我们发现第 2 波中新的(即独立的)遗传和环境影响大脑活动,同样具有区域模式。探索性分析发现焦虑和抑郁症状与颞叶几个区域的局部大脑功能之间存在微弱关联。这些发现与其他静息状态功能 MRI 指标(即功能连接)的类似研究一致。
步态障碍是脑小血管疾病(CSVD)的重要临床特征,它增加了跌倒和残疾的风险。大脑结构改变和CSVD患者的步态障碍已得到很好的证明。然而,步态障碍患者的内在静止脑功能模式在很大程度上尚不清楚。58名CSVD患者已参与我们的研究,并根据步态检查分为步态障碍组(CSVD-GD,n = 29)和NOT-NGAIT障碍组(CSVD-NGD,n = 29)。步态通过定时和GO测试以及能量消耗和活动的智能设备(IDEEA)进行定量评估。使用低频频率(FALFF)分析的功能性MRI和分数幅度用于探索局部固有的神经振荡改变。基于Falff结果的功能连接性被计算出来,以检测远程连接的潜在变化。与CSVD-NGD组相比,CSVD-GD组在主要位于感觉运动网络和额叶网络的区域中显示出Falff的下降,例如左侧补充运动区域(SMA.L)和左侧的顶壁回和左下角,并增加了右下角的Falff,在右下角吉里(Orbital Gyrus(Orbital Part)中,左下角是左侧的Pureane,以及左CARAINE,以及左CARAINE,以及左侧的caudate,pured caudaud of puretaud of caud od pured of tod of tod。此外,CSVD-GD患者在SMA.L和颞叶之间表现出较低的连通性,这与步态速度有关。sma.l的falff值与节奏有关。这项研究强调了步态障碍的CSVD患者中SMA的区域和网络相互作用异常。这些发现可以进一步了解CSVD中步态障碍的神经机制。
父母患有躁郁症(BD)或重度抑郁症(MDD)的后代对这些疾病的生物学风险(HR)高,鉴于其显着的遗传力。因此,研究HR-MDD和HR-BD年轻人的神经相关性对于了解情绪障碍发作之前的发展至关重要。低率波动(ALFF)和分数ALFF(Falff)的静止状态幅度显示出中度至高测试可靠性,这使其成为识别生物标志物的好工具。但是,这条途径仍未得到探索。使用健康的脑网络生物库,我们确定了150名儿童和青少年HR-MDD,50 HR-BD和150个没有任何精神疾病的风险(即对照组)。然后,我们检查了静止状态期间相对Alff/Falff信号的差异。与对照组相比,在校正后的阈值中,参与者HR-MDD在背侧尾状核中显示较低的静息ALFF信号。与对照组相比,HR-BD组在原发性运动皮层中显示出FALFF值增加。因此,在可能与重要情绪障碍,即精神运动迟缓和躁动有关的地区中注意到了牢固的差异。在未校正的阈值下,在中央孔皮层和小脑中发现了差异。数据库是一个社区引用的队列,就儿童的心理诊断和症状学而言,可能改变了结果。alff和Falff的结果,用于比较HR组与对照组重叠的,表现出良好的收敛性。需要进行更多的研究,以测量HR中的ALFF/FALFF来补充这些结果。
静息状态是指受试者不执行任何任务的状态。在这种状态下,大部分能量都用于大脑的自发活动,这会导致大脑局部区域的血流和血氧水平发生变化( Lv et al., 2018; Raimondo et al., 2021 )。功能性磁共振成像 (fMRI) 能够检测到大脑的变化,这些变化定义为血氧水平依赖性(粗体)信号( Lee et al., 2013 )。区域同质性 (ReHo) 基于 Kendall 系数一致性 (KCC),用于测量给定体素与其最近邻之间的时间序列的相似性( Zang et al., 2004 )。低频波动幅度(ALFF)测量每个体素在0.01~0.08Hz范围内时间序列的波动幅度,而低频波动分数(fALFF)测量低频波动对整个可检测频率范围的相对贡献(Zang等,2007;Zou等,2008)。与揭示脑区间时间相关性的功能连接(FC)相比,ReHo、ALFF和fALFF不需要事先假设来确定种子区域,同时,根据ReHo、ALFF和fALFF结果确定的异常脑区可以作为FC分析的种子。 ReHo、ALFF 和 fALFF 值用于评估自发性大脑活动,并已成功应用于各种神经和精神疾病的研究,如注意力缺陷多动障碍 (Shang et al., 2016, 2021)、阿尔茨海默病 (Song et al., 2021)、精神分裂症 (Sun et al., 2021) 和帕金森病 (Yue et al., 2020)。
注意:除第一个受试者(潜在异常受试者)的 CEN 中的 fALFF 外,所有相关系数均显著。缩写:ALFF,低频波动幅度;CEN,中央执行网络;DC,度中心性;DMN,默认模式网络;fALFF,低频波动分数幅度;ReHo,区域同质性;SN,显著性网络。a 标记的受试者被视为潜在异常值;因此,对所有原始数据和原始出版物中提到的所有技术问题进行了交叉检查。交叉检查未发现该受试者的任何特殊性(部分信号丢失或移动)。但是,当进行没有这个受试者的额外分析时,这个样本量(15 名参与者)的结果与整个样本(16 名参与者)的结果并没有明显差异,如图 S1 和 S2 所示。
生物医学智能为疾病和障碍的自动诊断提供了一种预测机制。随着计算生物学的进步,神经成像技术已广泛应用于临床数据分析。注意力缺陷多动障碍 (ADHD) 是一种精神障碍,其症状包括注意力不集中、冲动和多动,早期诊断对于预防不良后果至关重要。本研究通过评估多种特征提取方法,利用静息状态大脑的功能性磁共振成像 (fMRI) 数据解决 ADHD 识别问题。比较应用基于种子的相关性 (SBC)、低频波动分数幅度 (fALFF) 和区域同质性 (ReHo) 的特征来获得特异性和敏感性。这有助于确定使用卷积神经网络 (CNN) 进行 ADHD 分类的最佳特征。使用 fALFF 和 ReHo 的方法的准确率为 67%,而 SBC 的准确率在 84% 到 86% 之间,灵敏度在 65% 到 75% 之间。
生物医学智能为疾病和障碍的自动诊断提供了一种预测机制。随着计算生物学的进步,神经成像技术已广泛应用于临床数据分析。注意力缺陷多动障碍 (ADHD) 是一种精神障碍,其症状包括注意力不集中、冲动和多动,早期诊断对于预防不良后果至关重要。本研究通过评估多种特征提取方法,利用静息状态大脑的功能性磁共振成像 (fMRI) 数据解决 ADHD 识别问题。比较应用基于种子的相关性 (SBC)、低频波动分数幅度 (fALFF) 和区域同质性 (ReHo) 的特征来获得特异性和敏感性。这有助于确定使用卷积神经网络 (CNN) 进行 ADHD 分类的最佳特征。使用 fALFF 和 ReHo 的方法的准确率为 67%,而 SBC 的准确率在 84% 到 86% 之间,灵敏度在 65% 到 75% 之间。
对基本成就技能(阅读和算术)的神经影像学研究通常会控制智商的影响,以确定每项技能独特的神经相关性。这可能会低估成就和智商测量之间的共同因素对神经影像学结果的可能影响。在这里,我们同时研究了年轻人的成就(阅读和算术)和智商测量,旨在确定它们共同因素的 MRI 相关性。使用两个评估局部内在功能特性的指标分析静息态 fMRI(rs-fMRI)数据;区域同质性(ReHo)和分数振幅低频波动(fALFF),分别测量局部内在功能连接和内在功能活动。ReHo 强调丘脑/丘脑枕(一个与选择性注意有关的皮层下区域)是成就技能和智商的共同位置。更具体地说,ReHo 值越高,成就和智商分数越低。对于 fALFF,左顶叶上小叶(背部注意力网络的一部分)与阅读和智商呈正相关。总之,我们的研究结果强调了与注意力相关的区域,尤其是丘脑/枕部,这是与所有三个指标的个体表现差异相关的关键区域。丘脑/枕部的 ReHo 可以作为检查阅读和算术困难共病的大脑机制的工具,这些共病可能与一般智力能力的薄弱同时发生。
背景和目的:静息状态下的大脑活动可能与执行任务的能力有关;然而,涉及静息状态下功能性磁共振成像 (fMRI) 和事件相关电位 (ERP) 的多模态方法尚未广泛用于研究成瘾性疾病。方法:我们探索了 26 名患有网络游戏障碍 (IGD) 的患者和 27 名年龄和智商匹配的健康对照者 (HC) 的静息状态下 fMRI 和听觉异常 ERP 值。为了评估静息状态下 fMRI 的特征,我们计算了区域同质性 (ReHo)、低频波动幅度 (ALFF) 和低频波动幅度分数 (fALFF);我们还计算了 ERP 的 P3 成分。结果:与HC相比,IGD个体在听觉ERP任务中表现出左侧枕下回的ReHo和fALFF值显著降低,右侧楔前叶的ReHo和ALFF值升高,左侧额上回的ALFF升高,以及中线中央顶叶区域的P3波幅降低。此外,IGD患者右侧颞下回和枕叶区域的静息态fMRI区域活动与P3波幅呈正相关,而左侧海马和右侧杏仁核的ReHo值与P3呈负相关。讨论与结论:我们的研究结果表明IGD患者难以与认知功能和感觉处理进行有效的互动,尽管其解释需要谨慎。本研究的结果将拓宽对IGD病理生理学背后神经生物学机制的整体理解。
摘要 — 目标:对同一现象进行多模态测量可提供互补信息并突出不同的观点,尽管每种方法都有各自的局限性。只关注单一模态可能会导致错误的推论,当研究的现象是疾病时,这一点尤其重要。在本文中,我们介绍了一种利用多模态数据来解决精神分裂症 (SZ) 中的断线和功能障碍假设的方法。方法:我们首先使用高斯图模型 (GGM) 估计和可视化提取的多模态数据特征内和之间的链接。然后,我们提出了一种基于模块化的方法,该方法可应用于 GGM 以识别与多模态数据集中的精神疾病相关的链接。通过模拟和真实数据,我们展示了我们的方法揭示了与疾病相关的网络中断的重要信息,而这些信息在关注单一模态时会被忽略。我们使用功能性磁共振成像 (fMRI)、扩散磁共振成像 (dMRI) 和结构磁共振成像 (sMRI) 来计算低频波动的分数振幅 (fALFF)、分数各向异性 (FA) 和灰质 (GM) 浓度图。使用我们的模块化方法分析这三种模态。结果:我们的结果显示缺失的链接仅由跨模态信息捕获,这可能在组件之间的断开连接中发挥重要作用。结论:我们在 SZ 患者的默认模式网络区域中发现了多模态 (fALFF、FA 和 GM) 断开连接,这在单一模态中是无法检测到的。意义:所提出的方法为捕获分布在多种成像模态之间的信息提供了一种重要的新工具。