摘要 - 本文提出了一种基于密度的拓扑处理方案,用于局部优化由损失的分散材料制成的纳米结构中的电力耗散。我们使用复杂偶联的杆子(CCPR)模型,该模型可以准确地对任何线性材料的分散剂进行建模,而无需将它们限制为特定的材料类别。基于CCPR模型,我们在任意分散介质中引入了对电力耗散的时间域度量。CCPR模型通过辅助微分方程(ADE)合并到时域中的麦克斯韦方程中,我们制定了基于梯度的拓扑优化问题,以优化在宽频谱上的耗散。为了估计目标函数梯度,我们使用伴随字段方法,并将伴随系统的离散化和集成到有限差分时间域(FDTD)框架中。使用拓扑优化球形纳米颗粒的示例,由金和硅制成,在可见的 - 粉状谱光谱范围内具有增强的吸收效率。在这种情况下,给出了与基于密度的方法相关的等离子材料拓扑优化的拓扑挑战的详细分析。我们的方法在分散媒体中提供了有效的宽带优化功率耗散的优化。
节能窗口用于增加立面的热绝缘。这种绝缘窗口包含超薄的多层,透明的银色涂层,充当红外镜,可大大降低通过建筑物内部辐射发生的热损失。这些所谓的低发射涂层彻底改变了建筑物的隔热场,但也降低了太阳热增益系数,从而降低了冬季节能的潜力。在寒冷的气候下绝缘窗户应在EM波的传播中实现选择性行为。理想情况下,应该传输太阳能并反映中红外辐射,从而减少建筑物的加热需求。本科学论文介绍了基于有限差分时间域(FDTD)的数值研究,该研究重点介绍了银等离子体方形纳米霍尔阵列的光传递特性,并探讨了它们在绝缘窗口中的潜在应用。发现,周期性为350 nm且线宽为50 nm的纳米尔阵列具有出色的特性,并代表了在低E涂层中获得高太阳热增益的好候选者。这些发现有助于理解纳米荷尔阵列中的等离子效应,并提供有关此类结构在开发高级绝缘窗口中具有增强光学性能的实际应用的见解。
在这项研究中,我们分析了第一个原理计算中2D MOGE 2 P 4的光学,热力学和电子特性。2d Moge 2 P 4显示在NIR -I生物学窗口(750 nm〜1000 nm)中,峰接近808 nm和出色的导热率(63 WM -1 K -1)。有限差分时间域(FDTD)模拟和热模拟表明,2d Moge 2 P 4在低激光功率(0.5 W/cm 2)下具有有效的光热转化,该转换在808nm的运行。理论研究表明,2D MOGE 2 P 4的快速温度升高(ΔT= 24.8°C)在两分钟内,并且在多个激光周期内进行光热稳定性,可达到适合有效光热治疗应用的温度。光热治疗(PTT)是一种新兴的肿瘤治疗技术,它利用光热剂(PTA)将近红外(NIR)光转化为局部热量以进行肿瘤消融。为了提高生物相容性,我们通过分子动力学模拟分析了2D Moge 2 P 4纳米片的卵巢化。在人体温度下的pe节制是稳定的,这表示2d Moge 2 P 4的治疗应用前景。这项研究强调了2D Moge 2 P 4作为PTA的新兴材料的潜力,为实验和临床试验建立了基础。
抽象辐射能量是一个问题,随着数据速率的增加而变得复杂。此外,EMI问题经常在系统验证过程后期出现,靠近系统产品运输截止日期。这些EMI问题的解决方案非常昂贵且难以实施。因此,通过在产品设计阶段的模拟和分析来捕获潜在的EMI问题,而不是在产品开发结束时的EMC调节测量过程中捕获潜在的EMI问题。此外,EMI的仿真技术通常很复杂且耗时,也不适合宽带分析。本文介绍了一种使用3D场求解器工具来分析各种频率的辐射能量的方法。运行一个3D字段求解器模型,并在一系列频率上生成S-参数。初始溶解点用于生成辐射能量的定量结果。然后,只有初始求解是在各种频率下重新运行的,这是基于S参数结果的有趣点选择的。初始求解迅速完成,因此可以使用多个点来生成辐射能量在一系列频率中产生。然后,该方法用于分析来自一些连接器结构的EMI性能,并将其与实验室测量值进行比较。然后将各种特征比较有关它们对EMI的影响的各种特征。作者(S)传记Michael Rowlands是Molex信号完整性和连接器设计组的电气工程师。他专门从事多gigahertz频率的信号完整性。他在1998年获得了麻省理工学士的电气工程学士学位和硕士学位。毕业后,他在波士顿Teradyne担任信号完整性工程师四年。他为高达6 GHz的测试设备设计了电缆组件,电路板和互连。2002年,他在伊利诺伊州的一家初创公司工作。该公司以12.5 Gbps设计的色散薪酬微芯片用于光纤通信。他设计了电路板,以演示和验证12.5Gbps的性能,并根据系统建模进行算法改进。他在ECTC,DesignCon,IMAPS,IPC-APEX和PCB East上撰写或合着并介绍了技术论文。在2005年,作为Endicott Interconnect Technologies年的研发的一部分,他设计和分析了电路板,芯片软件包和自定义计算系统。自2009年以来,他从事Molex设计的下一代25-40Gbps I/O和板上连接器。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。 他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。 在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。 目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。Alpesh U. Bhobe获得了博士学位。 2003年科罗拉多大学科罗拉多大学科罗拉多大学的电气工程专业。他是2003年至2005年在科罗拉多州博尔德市的NIST的一名后者。在科罗拉多大学和NIST的研究期间,他的研究兴趣包括开发用于EM和微波应用程序的FDTD和FEM代码。目前,他正在加利福尼亚州圣何塞的EMC Design Cisco Systems担任经理。
摘要:在这项工作中,我们报告了基于TIO 2 @GaO x n y -ag异质结构的基于高性能的紫外线可见(UV-VIS)光电探测器。Ag颗粒被引入TIO 2 @GaO X n y,以增强异质结设备的可见光检测性能。在380 nm处,TIO 2 @gao x n y -ag的响应率和探测率分别为0.94 A/W和4.79×10 9 Jones,它们在580 nm处增加到2.86 A/W和7.96×10 10 Jones。响应的上升和下降时间分别为0.19/0.23和0.50/0.57 s。唯一的,在580 nm处,制造的设备的响应性比基于Tio 2,Ga 2 O 3和其他异质界的光电探测器高1-4个数量级。TiO 2 @gao x n y -ag杂结型装置的出色光电特性主要归因于金属 - 高中 - 微米 - 金属中的异质结的类型结构的协同效应,而不是有效地促进了成立式的ag级,而不是有效地促进了ag的等化速率。它被有限的差异时间域法(FDTD)模拟和光电测量所照亮。具有高效率检测的TiO 2 @GaO X N Y -AG阵列是适合在节能通信,成像和传感网络中应用的候选者。
简介。单光子源对量子计量学[1]的应用至关重要,安全量子通信[2]和光学量子计算[3,4]。在固态设备中,可以构造局部光子环境,以将光子的有效集合促进透镜。这可以通过将发射抑制到不需要的方向上,例如在光子晶体[5,6]中,或通过将发射促进到单个模式中,以使远距离的光学材料(例如纳米坦纳)很好地耦合到单个模式[7,8]。这些结构的数值设计通常集中在高质量因子的局部“腔”模式上,因为这些模式显示出明显的初始衰减,并且可以使用较小的仿真量进行计算,从而在实用的运行时进行计算。模拟无法预测频谱广泛,重叠的非腔(通常称为“泄漏”)模式,并且很难从数值差异时间域(FDTD)和限制元素方法(FEM)模拟中提取。了解这些非腔衰减通道的作用对于完全理解光子源行为至关重要,因为它们提供了替代性辐射衰减通道。有效地生成单个光子的流行设计将半导体量子点(QD)嵌入整体微骨腔中[9-11]。在脱离的bragg重新反射(DBR)之间形成DBRS停止带中的空腔模式,并通过将平面结构刻在支柱中来确定侧模式。QD通常是
摘要:氮化硅 (Si3N4) 是开发低损耗光子集成电路的理想候选材料。然而,标准光纤和 Si3N4 芯片之间的有效光耦合仍然是一项重大挑战。对于垂直光栅耦合器,较低的折射率对比度会导致较弱的光栅强度,从而导致较长的衍射结构,限制了耦合性能。随着混合光子平台的兴起,采用多层光栅排列已成为提高 Si3N4 耦合器性能的一种有前途的策略。在本文中,我们介绍了一种用于带有非晶硅 (α-Si) 覆盖层的 Si3N4 平台的高效表面光栅耦合器的设计。表面光栅完全形成在 α-Si 波导层中,利用亚波长光栅 (SWG) 设计的超材料,可通过单步图案化轻松实现。这不仅为控制光纤-芯片耦合提供了额外的自由度,而且还有助于移植到现有的代工厂制造工艺。使用严格的三维 (3D) 有限差分时域 (FDTD) 模拟,设计了一种超材料工程光栅耦合器,其耦合效率为 − 1.7 dB,工作波长为 1.31 µ m,1 dB 带宽为 31 nm。我们提出的设计为氮化硅集成平台提供了一种开发高效光纤芯片接口的新方法,可用于数据通信和量子光子学等广泛应用。
项目详细信息:动机:中红外(miR)光谱是一种强大的工具,可通过其独特的振动吸收特征(波长〜2-14 µm)来识别生化物质 - 在革命性技术中扮演至关重要的作用,使生物医学诊断,远程诊断和环境监视。不幸的是,miR光谱传感/成像被认为是繁琐的,昂贵的,通常是在实验室中固定的。对缩小传统光谱系统的技术挑战仍然存在 - 从光源,传感机制(由于相互作用弱)到检测子系统。metasurfaces为下一代多功能miR传感技术提供了令人兴奋的途径。元面是3D超材料的2D等效物:人工设计的材料,其特性在自然界中不可能找到。光子跨国使用子波结构(元原子)阵列内的纳米级光 - 含量相互作用来操纵电磁波。但是,光子学中的常规前向设计过程导致最终的设备功能和性能不足,没有明显的方法进行。AI驱动的逆设计方法提供了光子结构设计的新范式,以克服传统方法。项目:这个跨学科的博士学位项目将使用逆设计方法开发多功能光子跨度,用于非常规MIR光谱传感和高光谱成像技术。该博士学位的目标是开发了下一代mir技术的家族。C. Williams博士(PI),位于CMRI中,我们将调查(1)热发射微型源,这些微型源操纵热发射,超出了经典的各向同性,宽带和非偏振黑体发射; (2)增强与靶分子相关的分子振动吸收模式(包括葡萄糖,与工业伴侣结合); (3)用于超敏感传感的光驱动光热传感器。技能开发:研究跨越基本的光学物理学到应用程序,学生将在博士项目期间开发多样化且备受追捧的技能,包括:使用AI /机器学习方法,电磁模拟的计算光学器件(包括Lumerical FDTD和comsol),最先进的洁净室内的纳米制作(包括电子束光刻,物理蒸气沉积和两光子聚合3D打印),电形系统表征,感应性能的验证和高级数据分析。埃克塞特大学:埃克塞特物理学系在光学物理,光子设备开发和超材料方面具有广泛的专业知识。学生将拥有世界一流的研究设施,并基于超材料研究与创新中心(CMRI):一个学术,工业和政府合作伙伴的社区,可利用从理论到应用的世界领先的研究卓越研究,并启用模拟,测量和基于基于Metamagatials和Metamagematialial的设备。
图 1-1:物联网示意图 ................................................ . ................................................. ...................7 图 1-2:不同类型的条形码;一维或线性、堆叠线性和二维 [3]。................................................ . ................................................. ................................................. .....7 图 1-3:安全元件(智能卡、护照、重要卡)市场的全球预测(2010 年至 2018 年售出数百万件) – Eurosmart [4] .... ... ……………………………… ................................8 图 1-4:2017 年非接触式市场:销量(单位:百万台)[4] ……………………………… ......9 图1-5:战争期间利用反向散射原理与雷达操作员进行通信 [7]。................................................ . ................................................... 31 图 1-26:带有外力传感器进行跟踪的 RFID 标签食品 [25] ................................... 33 图 1-27:a) 使用基于石墨烯的外部功能化区域的 RFID 传感器b) 电阻随相对湿度变化而变化的结果 [22] ................................................... 33 图 1-28:通信 RFID 传感器系列模拟................................................ ................. 35 图 1-29:具有阈值检测功能的生物 RFID 传感器:a) RFID 传感器剖面图,b) 俯视图,c) 不可逆石蜡基底的影响:芯片最小激活功率随温度变化的变化[61]。................................................ . ................................................. ...................................................... 39 图1 -30:示例取自带有敏感天线的 RFID 传感器文献,左侧:完全由石墨烯制成的天线 [47],右侧:由石墨烯精细部件组成的天线 [72]。...................................... 41 图 1-31:取自[76]的结果:a) 900 MHz 下蒸馏水的电特性 b ) RFID 传感器的最小激活功率,针对不同气温进行测量和平均。...................................... 43 图 1-32:结果取自[48]:a) 示意图由 Pt_rGO 实现功能化的射频识别 (RFID) 传感器标签。b) 柔性 RFID 传感器的照片。c) RFID 传感器的测量结果作为氢浓度的函数。................................................ . 43 图 2-1:无源 UHF RFID 传感器的天线功能化检测策略 ................................. ....... 56 图 2-2:无源 UHF RFID 标签的等效电路 [1] ........................................ ................................................ 57 图 2 -3: 辐射图偶极子与各向同性偶极子的比较 [5] ................................................ 59 图 2-4:极化电磁波的特征,a) 垂直极化,b) 水平极化和 c) 圆极化 [6] ........................................ . ................................................. ................................................. ....... 60 图 2-5:RFID 阅读器和标签之间的读取距离示意图 ................................ ................................................. 60 图 2-6:材料与电阻率的关系 [8] .... ................................................... ................................................... 62 图 2-7:法拉第实验:电枢电容器 [10] ................................ 62 图 2-8:电容器上电场感应的偶极矩原子 [10] ................................................ . .... 63 图 2-9:极化现象示意图 [10] ................................................ .. ................................... 64 图 2-10:复介电常数随频率的变化 [14] ................................................... 66 图2-11:实部和虚部复介电常数的计算....................................................... ................................. 66 图 2-12:介电常数和损耗对天线反射系数的影响....................... 67 图 2-13:小麦面筋的复介电常数与相对湿度 (RH) 的函数关系,频率为 868 MHz,温度为 25°C [13]。................................................ . ................................................. ................................................. ...................................... 68 图 2-14:拟议传感器天线的组成示意图。................................................ . ............ 69 图 2-15:用不同的方法对球体进行网格划分: (a) 球体的几何形状;使用 (b) 四面体 (FEM)、(c) 正交单元 (FDTD) 和 (d) 三角形 (MoM)[21]。...................................... 70
电子束光刻:根据应用,将电子束光刻胶 (950K PMMA A4,MicroChem) 旋涂至 270 nm-330 nm 的厚度。接下来,在顶部热蒸发 20 nm Au 的导电层,以避免光刻过程中电荷积聚。为了进一步减轻充电效应,我们使用了相对较低的束电流 (0.3 nA)、多通道曝光 (GenISys BEAMER) 和减少电子束在一个区域持续停留时间的写入顺序。光刻胶的总曝光剂量为 1200 uC/cm2,电压为 100 kV (Raith EBPG5000 plus)。曝光后,我们用 TFA 金蚀刻剂 (Transene) 去除导电层,并在 7 C 的冷板上将光刻胶置于 1:3 MIBK:IPA 溶液中显影 90 秒,然后用 IPA 封堵 60 秒,再用 DI 水冲洗。原子层沉积:在进行 ALD 之前,我们在 ICP RIE 工具 (PlasmaTherm Apex) 中使用 10 sccm O2 和 50 W ICP 功率进行三秒等离子曝光,以去除残留聚合物。使用此配方,PMMA 蚀刻速率约为 2.5 nm/s。对于 TiO 2 沉积,我们使用商用热 ALD 室 (Veeco/Cambridge Savannah ALD)。使用四(二甲酰胺)钛 (TDMAT) 和水在 90 C 下沉积非晶态 TiO 2,交替脉冲分别为 0.08 秒和 0.10 秒。沉积期间连续流动 100 sccm N 2,前体脉冲之间的等待时间为 8 秒。沉积速率通常为 0.6 A/循环。 ICP 蚀刻程序:我们通过氯基 ICP RIE 蚀刻(PlasmaTherm Apex)去除过填充的 TiO 2,基板偏压为 150 W,ICP 功率为 400 W,Cl 2 为 12 sccm,BCl 为 8 sccm。蚀刻速率通常为 1.5-1.7 nm/s。SEM 成像:在 5 nm Cr 导电层热沉积后,使用 Carl Zeiss Merlin FE-SEM 对纳米光子结构进行成像。FDTD 模拟:使用 Lumerical 有限差分时域软件模拟环形谐振器、光子晶体腔和光栅耦合器。透射光谱:我们使用自制的共焦显微镜装置,该装置具有独立的收集和激发通道,以进行透射光谱。脉冲超连续源 (430-2400 nm,SC-OEM YSL Photonics) 和光谱仪 (1200 g/mm,Princeton Instruments) 用于宽带测量。为了对单个腔体谐振进行高分辨率扫描,我们使用 50 kHz 线宽、可调 CW 激光器 (MSquared) 进行激发,并使用雪崩光电二极管 (Excelitas) 进行检测。金刚石膜:通过离子轰击 34 生成 500 nm 厚的金刚石膜,并在阿贡国家实验室通过化学气相沉积进行覆盖。在对离子损伤层进行电化学蚀刻后,去除悬浮膜并用 PDMS 印章翻转。然后使用 ~500 nm 的 HSQ 抗蚀剂将它们粘附到 Si 载体上,并在氩气中以 420 C 的温度退火 8 小时。最后,使用 ICP 蚀刻法将膜蚀刻至所需厚度,蚀刻气体为 25 sccm Ar、40 sccm Cl2、400 W ICP 功率和 250 W 偏压功率。蚀刻速率通常为 1.2-1.4nm/s。