多伦多市一直在经历前所未有的增长,这在我们的街道上证明了对路缘空间的需求增加,这部分归因于电子商务和相关的交付系统的兴起。鉴于这些需求以及新技术,交付模型和商品运动中的方法的扩散,其中某些货运活动的相关影响也有助于交通拥堵,空气质量差,增加温室气体(GHG)排放和噪音,有时会损害城市其他模式的安全性。 同样,货运和商品运动行业也经历了自己的挑战,例如有限的停车和装载选择,整个城市的旅行时间可靠性以及限制新交付方法的监管限制,仅举几例。 本报告中概述的FGMS包含针对性的行动,以解决该市和货运行业所面临的许多问题。鉴于这些需求以及新技术,交付模型和商品运动中的方法的扩散,其中某些货运活动的相关影响也有助于交通拥堵,空气质量差,增加温室气体(GHG)排放和噪音,有时会损害城市其他模式的安全性。同样,货运和商品运动行业也经历了自己的挑战,例如有限的停车和装载选择,整个城市的旅行时间可靠性以及限制新交付方法的监管限制,仅举几例。本报告中概述的FGMS包含针对性的行动,以解决该市和货运行业所面临的许多问题。
功能梯度材料 (FGM) 的概念是为了开发高性能耐热材料而提出的,其中耐热陶瓷与金属混合[1]。FGM 是一类先进的异质材料,其成分和性能表现出可控的空间变化,从而导致其性能 (热/电导率、耐腐蚀、机械、生物化学等) 逐渐变化。FGM 背后的主要思想包括一种不能满足所有设计要求的材料和一种适用于特定位置和操作条件的不同材料。由于这种协同效应,FGM 可应用于不同领域,例如生物医学、汽车和航空航天、电子、光学、核应用、反应堆部件和能量转换 [2]。FGM 的特点是材料之间可以逐渐转变,也可以不连续/突然转变。对于突然转变(直接界面),部件会承受巨大的应力和化学不相容性。相反,连续/渐进的转变可以最大限度地减少这些问题,并改善界面处的机械性能 [3、4]。基于电弧的定向能量沉积(DED-arc),通常称为线材和电弧增材制造(WAAM),是制造 FGM 的一种很有价值的制造技术。使用配备多个独立线材送料器的机器可以轻松进行其生产,从而可以创建在多个方向上具有成分和性能梯度的部件。同时使用两根线材被称为双线和电弧增材制造 (T-WAAM)。尽管如此,在同一熔池中结合两种材料会带来令人困惑的挑战,包括可能形成不良的金属间化合物,这会降低可焊性/可打印性(例如,由于形成热裂纹和高硬度区域)并导致过早失效 [2]。此外,热膨胀系数不匹配、熔化温度差异以及溶解度不足都会导致开裂和脆化 [5]。每根焊丝不同的热物理性质也意味着确保零件无缺陷所需工艺参数存在显著差异。316L 不锈钢与 Inconel 625 的 FGM 用于化工厂、石油天然气和核工业应用。特别是在堆焊管道和阀门中,零件插入两种不同的环境中,需要不同的耐腐蚀和耐磨性(内部接触腐蚀性流体,例如含有高 CO2 和 H2S 的原油,外部接触大气 [6e8])。尽管 Inconel 625 的这些性能更胜一筹,但在结构件的关键区域用不锈钢替代 Inconel 可以降低相关部件成本。两种合金的基质均为单个面心立方 (FCC) 相 (g),主要合金元素为 Fe、Cr 和 Ni。根据工艺和制造策略,可能会出现一些问题,其中热裂纹尤为普遍。Shah 等人 [9] 使用激光定向能量沉积 (L-DED) 分析了工艺参数对 316 不锈钢到 Inconel 718 FGM 制造的影响。作者没有证明由激光诱导裂纹的证据
具有特定位置化学成分的功能梯度材料 (FGM) 通常通过定向能量沉积 (DED) 制造。尽管之前的工作制造了一种成分在铁素体和奥氏体合金之间变化的 FGM,但是由于成分变化导致沉积物形状发生变化,因此出现了困难。文献中的 FGM 也存在此问题;然而,与其他情况不同,这两种合金在整个构建过程中的热物理性质相似。在这里,我们研究了在通过激光 DED 制造 FGM 过程中化学成分和表面活性元素对沉积物几何形状的作用。使用经过充分测试的三维瞬态数值传热和流体流动模型和热力学计算的结果,分析了相关 FGM 成分的单轨实验。实验表明,在恒定的激光功率和扫描速度下,沉积物形状随成分而变化。热力学分析表明,熔合区中氧的溶解度对于用于 FGM 的每种成分都存在显著差异。数值建模表明,熔合区中溶解氧引起的 Marangoni 对流引起的流体流动变化是实验中观察到的沉积物形状变化的主要原因。由于氧气可以通过原料以及周围大气进入熔合区,这些发现阐明了 FGM DED 制造过程中以前未考虑的工艺控制方面。
摘要:定向能量沉积 (DED) 是金属增材制造 (AM) 中的关键工艺,具有创建功能梯度材料 (FGM) 的独特能力。FGM 凭借其性能优化、减少材料缺陷和解决连接问题等优势,在高价值行业中引起了极大关注。然而,后处理仍然是一个关键步骤,这表明需要进一步研究以了解 FGM 的可加工性。本文重点分析了基于不锈钢 316L (SAE 316L) 和 Inconel 718 的 FGM 的制造和加工特性。FGM 的制造从 100 wt.% 的 SAE 316L 开始,通过逐步增加 20 wt.% 的 Inconel 718 并同时减少 SAE 316L 来调整成分比。在 FGM 制造完成后,通过硬度测试、光学微观结构测量、能量色散光谱 (EDS) 和 X 射线衍射 (XRD) 全面分析了微观结构和机械性能。为了研究后处理方面,使用两种不同的铣削方法(向上和向下铣削)和加工路径(从 SAE 316L 向 Inconel 718,反之亦然)进行了端铣削实验。平均切削力在向上铣削时达到峰值 148.4 N,在向下铣削时降至 70.5 N,刀具磨损测量进一步提供了在使用 SAE 316L 和 Inconel 718 的 FGM 时最佳铣削方向的见解。
本文参考改进的耦合应力理论和欧拉-伯努利梁理论,研究了带有可移动附着质量的微梁的自由横向振动响应。这是一个适用于生物和生物医学应用的良好模型,有利于早期诊断人体器官和酶的疾病和功能障碍。微悬臂梁由功能梯度材料 (FGM) 组成。材料特性应该显示与定律幂一致的梁厚度变化。采用瑞利-里兹法探索前三种振动模式的固有频率。为了证明所提方法的准确性,建立了结果并将其与技术文献并列。考虑了捕捉尺寸依赖性的材料长度尺度参数、梁质量与附着质量质量之比以及梯度材料的功率指数对系统振动行为的影响。本技术研究指出了材料级配以及附着质量的惯性在生物微系统动态行为中的重要性。因此,采用合适的功率指数、质量比和附着质量的位置可以设计出更优的生物微系统,以进行早期诊断。
收到日期:2021 年 8 月 5 日;修改后收到日期:2021 年 9 月 28 日;接受日期:2021 年 10 月 2 日;在线发布日期:2021 年 11 月 1 日摘要本文对室温下由多孔功能梯度聚合物材料 (PFGPM) 制成的 3D 打印圆柱形试件进行了疲劳寿命试验。在各种孔隙率和梯度指数参数下,获得了完全反向弯曲、平均应力等于零的恒幅载荷的试验结果。使用应力寿命方法通过实验评估疲劳特性。对光滑试件进行了 FEA 模拟,采用了三种加载模式(反向弯曲、反向轴向和反向扭转)。数值分析 (FEA) 和实验结果用于强调应力比 (R) 对疲劳寿命的影响。在反向弯曲试验中使用了五个应力比值(R = -1、0、0.25、0.5 和 1)。试验结果表明,受反向弯曲的试件的寿命比受轴向和扭转载荷模式的试件更长。结果表明,试件的寿命随着载荷比的增加而增加,实验和数值工作之间的最大差异为 8%。疲劳极限值受孔隙率参数和梯度指数的影响。版权所有 © 2021 国际能源与环境基金会 - 保留所有权利。关键词:应力寿命方法;SN 曲线;加载模式;应力比;疲劳寿命;FEA。1. 简介功能梯度材料 (FGM) 是一类先进材料,其结构特性沿厚度方向分级 [1]。孔隙率梯度是 FGM,其中材料通过部分层的密度或孔径的变化可用于增强其特性。它们可以使用 3D 打印技术用各种材料制成。在金属和聚合物泡沫中可以找到提供轻质和足够机械稳定性能的 PFGM。除其他各种用途外,聚合物还是一种用途广泛且必不可少的材料,可用于能源、航空航天和生物材料,因为它们能有效吸收冲击载荷并控制静态和动态响应,[2]。据估计,90% 的金属部件使用故障都是由疲劳引起的。疲劳过程经历几个阶段,从工程角度来看,将结构的疲劳寿命分为三个阶段比较方便:疲劳裂纹萌生、稳定裂纹扩展和不稳定裂纹扩展 [3]。QS Wang 等人 [4] 研究了功能梯度 Ti-6Al-4V 网状结构在相同体积应力条件下的疲劳行为。研究发现,疲劳裂纹首先萌生在
本研究提出了二维功能梯度 (2D-FG) 金属陶瓷多孔梁静态屈曲和自由振动分析的解析解。为了实现这一目标,利用汉密尔顿原理推导出梁的运动方程,然后在 Galerkin 著名的方程解解析法框架内求解导出的方程。梁的材料属性随厚度和长度的变化而变化,符合幂律函数。在功能梯度材料 (FGM) 的制造过程中,可能会由于技术问题导致微孔出现而出现孔隙。本文给出了详细的数学推导并进行了数值研究,重点研究了各种参数(例如厚度和长度两个方向上的 FG 功率指数、孔隙率和细长比 (L/h))对基于新高变形梁理论的梁的无量纲频率和静态屈曲的影响。通过将结果与公认的研究进行比较,验证了所提出模型的准确性。根据屈曲和振动分析的结果,所提出的沿厚度方向的修改的横向剪应力与TBT相比表现出更接近的结果。
功能分级的材料(FGM)在无机热电学的背景下被广泛探索,但尚未在有机热电学中进行。在这里,研究了掺杂梯度对化学掺杂共轭聚合物的热电特性的影响。柜台的平面漂移用于中等电场中,用于在由寡聚侧链的聚噻吩中创建侧向掺杂梯度,并用2,3,5,5,6-Tetra-fuoro-tetra-tetra-fuoro-tetrace-tetrachachacyanoquinainoimeneimetimethane(f 4 tcnq)(F 4 TCNQ)。拉曼显微镜表明,在50μm宽的通道上的偏置电压仅为5 V,足以触发反逆漂移,从而导致掺杂梯度。分级通道的有效电导率随偏置电压降低,而观察到Seebeck系数的总体增加,可产生高达八倍的功率因数。动力学蒙特卡洛模拟分级纤维的模拟解释了在高电导率下,在高电导率下seebeck系数的掷骰,以及由于高掺杂剂浓度下的库仑散射而增加的迁移率。因此,发现FGM概念是提高尚未最佳掺杂的有机半导体的热电性能的一种方式,这可以减轻新材料的筛选以及设备的制造。
摘要:直接激光金属沉积(DLMD)是一种最先进的制造技术,用于在这项研究中制造316L不锈钢/inconel 625功能分级材料(FGM)。对于这些材料在行业中的实际应用,过程参数对几何特征和表面粗糙度的影响需要更多的研究。通过更改每一层中316升不锈钢/inconel 625的比例,该女性FGM是在五层中加上五层制造的。研究了激光功率对几何特性,身高稳定性和表面粗糙度的影响。研究了微观结构分析和微硬度填充。结果表明,尽管有较高的固定速率,但合金元素的分离发生了。还发现,增加激光功率将增加梯度壁的高度,宽度,高度稳定性和表面粗糙度。在最高激光功率(280 W)处,沉积层的最大宽度和高度分别为1.615和6.42 mm。在220 W的激光功率下,将获得最小的表面粗糙度(R a =105μm)和最佳的高度稳定性(0.461 mm)。在225-277 HV范围内的各个部分的各个部分中,显微硬度值将有所不同。
为了弥补异种材料和复合材料的功能限制,人们通过各种工艺实现了 FGM(功能分级材料)结构。随着 3D 打印技术的发展,可以将材料局部应用于所需区域,因此 FGM 的应用范围有望扩大。特别是,使用 DED(定向能量沉积)方法的 3D 打印工艺可以组合各种材料,并且可以说是实现 FGM 结构的合适工艺,因为还可以通过改变结构和热输入来控制密度。在本研究中,为了在钢和镍材料之间组成异种结构,进行了 STS316L 和 IN625 之间异种材料的沉积。特别是,通过应用 FGD(功能分级沉积)结构,根据每种成分比评估微观结构和机械性能。在STS316L与IN625的FGD界面,确认了各组成比的成分分布,在STS316L(80wt.%):IN625(20wt.%)的组合截面上观察到了裂纹。确认了力学性能后,虽然在同样的截面上也观察到了断裂,但内部也观察到了未熔融相,因此认为微观结构与力学性能之间的关系有待进一步研究。