1.1. 分类和命名法 ................................................................................................................ 1 1.2. 基因组组织 ...................................................................................................................... 4 1.3. 病毒生命周期 ................................................................................................................ 5 1.4. 先天免疫的诱导 ................................................................................................................ 8 1.5. 传播和临床症状 ................................................................................................................ 9 1.6. 控制和治疗 ...................................................................................................................... 11 1.7. 检测和血清学检测 ............................................................................................................. 13 1.8. 疫苗接种 ............................................................................................................................. 15 1.9. DNA 成分的优化 ............................................................................................................. 16 1.10. 论证和假设 ................................................................................................................ 21 第 2 章 材料和方法 ................................................................................................................ 24
尽管使用 FMDV 疫苗已成功降低疫情爆发的频率 5 ,但美国和欧洲并未实施预防性疫苗接种,因为这会对动物和动物产品的国际贸易造成限制,并且无法在接种疫苗的人群中检测出携带者 6 。疫苗接种的另一个危害是 FMDV 疫苗生产使用活病毒,这存在控制风险。有证据表明,一些 FMD 疫情实际上源于疫苗,因为在配制之前灭活不完全 7 ,或者是病毒从实验室泄漏 8 。这些事件凸显了对更有效控制方法的需求,事实上,不需要在任何生产阶段感染传染性 FMDV 的疫苗正在研发中 9 。另一种策略是设计抗 FMDV 药物。
3) 在广泛使用之前,应在牛身上对各批次疫苗进行独立测试,以检测其是否产生 FMDV 抗体,具体如下:• 应使用每批次的样品对一组 5 头无 FMDV 测试牛(与其余牛群隔离)进行接种。这需要在整个过程中保持极高的生物安全性。• 应通过病毒中和试验 (VNT) 和非结构蛋白 (NSP) ELISA 测量接种后第 0 天和第 21 天收集的血清中诱导的 FMDV 抗体水平。• 应将第 0 天和第 21 天的血清送至有资质的 FMD 参考实验室进行检测。这将提供过期疫苗抗原含量的血清学读数,并给出预期保护的指示。
到 2027 年的预期成果: • 处于 PCP-FMD 0 和 1 阶段的国家:至少达到 PCP-FMD 2 阶段 • 处于 PCP-FMD 2 和 3 阶段的国家:在根除 FMDV 和获得 WOAH 官方认可方面取得进展 • 自由国家和地区:保持并提高其地位
口蹄疫不会对人类健康构成威胁,也不会引起食品安全问题,但美国发生的口蹄疫疫情将扰乱关键的农业市场和出口,包括牛肉和猪肉。尽管自 1929 年根除口蹄疫病毒以来,美国一直没有出现过这种病毒,但据估计,疫情爆发可能造成 20 亿美元至 2000 亿美元的损失。https://www.aphis.usda.gov/animal_health/emergency_management/downloads/fmd-vac-policy.pdf#:%7E:text=It%20is%20estimated%20that%20an%20FMD%20outbreak%20in,depending%20upon%20its%20mode%20of%20introduction%20and%20extent。口蹄疫病毒分布广泛;它存在于非洲、中东、亚洲以及南美洲和欧洲的部分地区。出现确诊病例的国家受到国际贸易限制,旨在降低将口蹄疫引入无病国家的风险。
脚和口径疾病(FMD)是一种高度传染性的牲畜病毒疾病,会造成严重的经济损失。FMD病毒(FMDV)属于Picornaviridae和Aphthovirus家族,分为七个血清型(1,2)。七个FMDV血清型之间的交叉保护无法使其预防和控制复杂化(3,4)。fmd通常由症状(例如高烧,口腔中的水泡以及粘性或泡沫状唾液的过度分泌)来鉴定(5)。此外,成年动物可以体重减轻,几个月内无法恢复,雄性睾丸肿胀,并显着减少牛奶的产量。尽管几只感染的动物仍然无症状载体,但它们可以携带病毒并将其传播给其他动物(6,7)。许多国家建议进行疫苗接种,以防止FMD急性扩散;但是,可用的疫苗有几个局限性,例如低抗体滴度和注射部位的局部反应。因此,我们研究了有效的佐剂,以增强疫苗的细胞和体液免疫反应并解决安全问题。韩国属于FMDV血清型池1,主要暴露于FMDV血清型O,A和亚洲1(8)。自2000年以来,韩国的FMD爆发主要归因于血清型O和A。的确,从2017年到2023年,FMD最近发生的FMD爆发是由O型(ME-SA拓扑)和A型(A/ASIA/SEA-97拓扑型)引起的。因此,在这项研究中,使用FMD抗原O PA2(ME-SA拓扑型)和YC(A/Asia/Sea-97拓扑型)制备了测试疫苗。佐剂与特定的疫苗抗原结合使用时会增强和延长免疫反应(9);因此,要开发一种新型的FMD疫苗,必须对各种佐剂进行研究。大多数FMD疫苗都涉及使用灭活的病毒抗原。矿物油基佐剂和氢氧化铝[AL(OH)3],有或没有皂苷,已用作FMD疫苗的传统佐剂,以改善灭活病毒抗原的稳定性和递送(10-13)。已经报道了含有粗皂苷的FMD疫苗,包括在疫苗接种位点进行溶血并引起短寿命抗体反应。因此,比皂苷更安全并可以诱导强烈的免疫反应的Quil-A用作FMD疫苗辅助(14)。尽管有改善的FMD疫苗,但建议重复进行疫苗接种,这是由于低和短寿命的抗体滴度。重复的疫苗接种可能会在注射部位引起局部副作用,这是由于FMD疫苗中包含的矿物油基辅助剂(11、13、15-17)。因此,当前在FMD疫苗中使用的佐剂,特定的免疫刺激性组合需要改进以增强效率和安全性。在先前的研究中,我们确认用树突状细胞(DC)相关的C型凝集素-2(Dectin-2)激动剂诱导的PBMC增殖(18)处理猪外周血单核细胞(PBMC)(DC)相关的C型凝集素-2(DC)相关的C-Type凝集素2(DC)。因此,我们假设Dectin-2激活引起了猪中强大的免疫反应。基于先前的研究,我们使用了Dectin-2激动剂D-Galacto-D-Mannan作为本研究中新型FMD疫苗的辅助。dectin-2是包含
自 2005 年以来,由联邦和承包商科学人员组成的 DHS PIADC 科学计划已执行了一系列与食品、农业和兽医防御 (FAV-D) 相关的项目。该计划专注于与预防、保护、减轻、应对和从故意、自然或意外引入限制贸易的跨境动物疾病中恢复相关的项目,支持该科学计划的科学家对 FAV-D 项目进行研究、开发、测试和评估 (RDT&E) 工作,主要涉及非洲猪瘟病毒 (ASFV) 和口蹄疫病毒 (FMDV)。
针对过去几年在东南亚、中亚、东亚和南亚地区流行的几种地域型和谱系的代表性口蹄疫病毒进行疫苗匹配。疫苗株和野生分离株之间的血清学匹配基于异源病毒中和滴度 (VNT) 作为异源交叉保护的指标。单剂量接种后大于或等于 1.5 log 10 的值被视为最低异源交叉保护的指标。
过去几年,埃及牲畜中发生了多起由 A、O 和 SAT-2 血清型口蹄疫病毒引起的疫情,导致牛只大量死亡 [6]。埃及首次正式报告口蹄疫可追溯到 1950 年,涉及 O 血清型和 SAT-2 [7, 8]。SAT-2 血清型在 1950 年后消失,后来在 2012 年的一次疫情中分离出来,其中包括两种与 2008 年苏丹毒株密切相关的新菌株 [9, 10]。A 血清型口蹄疫病毒于 1952 年被报道,1976 年消失,2006 年因从埃塞俄比亚进口活体动物而重新出现 [11]。El Nahas 和 Salem [12] 以及 El Damaty 等人的报告。 [13] 还从 O 血清型和 SAT2 拓扑型中发现了新的谱系,这些谱系与幼年和成年动物的较高死亡率异常相关。这一点值得注意的是;口蹄疫通常不会导致成年动物严重死亡,但会造成巨大的经济损失,严重影响小农生产系统中受影响农民的生计和收入 [14]。尽管埃及实行强制接种疫苗,但该国仍然面临着与口蹄疫疫情相关的挑战 [13, 15]。受感染的牲畜通常表现出体温升高、反刍停止、唾液分泌增多、嘴唇、舌头、口腔、鼻子、脚趾间以及有时乳头皮肤上出现溃疡以及产奶量下降等临床症状 [5]。