• 杨百翰大学物理学学士学位,2012 年 - 设计用于安全应用的新型中子探测器 - 非常应用的研究,感觉像核工程 • 洛斯阿拉莫斯的本科后研究员,2012-2013 年 - 最初通过 DOE SULI 实习计划 - 生成和测试用于模拟的中子截面数据表 • 加州大学戴维斯分校物理学博士学位,2018 年 - 超新星中微子相互作用的模拟 - 费米实验室 ANNIE 实验的中子背景测量 • 费米实验室博士后,2018-2022 年 - MicroBooNE 实验的模拟和分析工作 • 2022 年晋升为员工,现任物理模拟系组长
费米实验室的使命是成为粒子物理发现的前沿实验室。该加速器综合设施为宇宙基本性质的研究提供了动力,是世界上唯一一个既能为科学生产低能和高能中微子束,又能进行精密科学实验的加速器综合设施。长基线中微子设施 (LBNF) 和深层地下中微子实验 (DUNE) 的建设,以及质子改进计划 II (PIP-II) 项目实现的世界上最强的中微子束,将成为美国能源部国家实验室的第一个国际大科学项目。费米实验室通过其在中微子、对撞机、精密和宇宙科学方面的实验和项目,将美国研究人员整合到全球粒子物理事业中。该实验室的科学研发推动了加速器、探测器、计算和量子技术在科学和社会中的应用。
Delta Anthem Wells Fargo Barclays Mizuho Mufg Mitsubishi Chem Argonne Lab Fermimberab Berkeley Lab Iti Naval Res Lab Itri III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III III Tooyota hitachi Toshiba横川电气原子原子学
简介和动机 在过去十年中,机器学习 (ML) 技术逐渐进入加速器社区。近年来,深度学习的快速发展,特别是用于控制系统应用的强化学习以及深度学习在嵌入式硬件中的可访问性,重新引起了人们的兴趣并催生了大量应用 [ 1 ]。费米实验室加速器综合体(如图 1 所示)已为高能物理 (HEP) 实验提供了近五十年的质子束。该实验室目前的重点是其世界一流的强度前沿实验项目。虽然增加光束强度确实有其自身的挑战,但在很多方面,保持光束大小同时最大限度地减少光束损失(通过与光束真空管相互作用而损失的粒子)才是主要挑战。加速器通过数十万个设备的复杂系统进行控制。使用 ML 方法实现对其参数的微调和实时优化并超越人类操作员基于经验的推理是未来强度升级成功的关键。我们的目标是将 ML 集成到加速器操作中,此外,提供一个可访问的框架,该框架也可被具有动态调整需求的其他广泛加速器系统使用。为了成功最大限度地发挥 ML 的应用优势,我们将考虑以下几点:实时边缘 ML 系统优化:加速器涉及电源、射频和其他控制系统的复杂调节回路阵列。调节回路的增益针对操作进行手动优化和修复。实际上,光束分布和强度是在加速过程中变化的动态量。因此,这些动态系统理想情况下应该以近乎实时的方式重新检查操作条件。这需要一个能够在足够短的毫秒时间尺度上对系统变化做出反应的 ML 模型。快速、智能的分布式系统:由于粒子加速器的物理规模很大,控制系统往往分布在整个设施中。因此,优化每台机器的性能以及综合体的整体性能意味着需要一个快速的数据传输系统,允许子系统、机器和负责运行 ML 算法的计算机资源之间进行实时通信。我们的项目 Accelerator READS 将开发 ML 方法及其在大型加速器系统中的边缘实现。费米实验室在开发用于系统控制的实时嵌入式边缘 ML 设备方面处于领先地位,并利用 ML 提高了 HEP 实验的效率和准确性,例如紧凑型μ子螺线管 (CMS) 实验 [ 2 ]。利用内部实验室指导的研究和开发 (LDRD) 计划,费米实验室已经证明单个 ML 系统可以提高加速器性能。然而,将嵌入式 ML 系统连接在一起以协调分析和控制多个复杂结构尚未实现。将这项技术应用于加速器将使费米实验室加速器设施向快速、分布式和高性能控制和操作迈进。加速器 READS 产生的方法和工具将与各种复杂和分布式控制器的设计相关。我们将通过两个重要的实验来证明我们提案的有效性:Mu2e 溢出调节系统和主喷射器 (MI) 和循环器环 (RR) 光束损耗的去混合。
英国在加速器科学研究和开发方面仍占有重要地位,为欧洲散裂中子源、欧洲核子研究中心的 HL-LHC 和美国费米实验室的 PIP-II 等重大国际项目做出了贡献。英国国内和国际的下一代研究基础设施将具有更具挑战性的性能规格,并将继续推动创新。加速器技术的进步有可能对英国经济和更广泛的社会产生影响,包括加速器的医学应用;保持英国在加速器研究和开发方面的能力和能力对英国具有关键的战略意义。我们还认识到,下一代加速器的性能在建造和运营方面必须是可持续的和低碳的。
•随着AI和量子信息科学等变革性技术的出现,国家实验室是否能够支持这些新技术的发展,同时面临他们对美国安全提出的新挑战?第二次世界大战期间的背景,美国军方将世界顶级科学家汇集在一起,并任务他们开发第一个核弹。被称为曼哈顿项目,这项工作导致了第一家国家实验室的创建。在战后,美国政府成立了原子能委员会(AEC),以管理这些新创建的实验室,并继续开发核武器。在1950年代,艾森豪威尔(Eisenhower)通过其“和平原子”倡议试图利用原子的力量来利用商业能源用途的力量,这将实验室的重点扩大到包括非军事核研究和开发项目。1971年,尼克松总统建立了能源研发管理局(ERDA),以支持AEC的研究活动以及非核能源形式的发展。为了合并政府的研究活动,卡特总统签署了《能源组织法》,该法将AEC转变为能源部(DOE)。1今天,DOE雇用了14,000多名联邦雇员,负责95,000名承包商,并经营着17个世界领先的国家实验室,这些实验室支持各种科学学科的尖端研究。 其使命是通过通过变革性的科学和技术解决方案解决其能源,环境和核挑战来确保美国的安全和繁荣。1今天,DOE雇用了14,000多名联邦雇员,负责95,000名承包商,并经营着17个世界领先的国家实验室,这些实验室支持各种科学学科的尖端研究。其使命是通过通过变革性的科学和技术解决方案解决其能源,环境和核挑战来确保美国的安全和繁荣。2通过此任务,DOE是物理科学基础研究的最大联邦赞助商,在美国研究企业中起着核心作用,与包括国家科学基金会(NSF),国家标准技术研究所(NSF),美国地质学调查以及国家航空航天和太空管理(NASA)(NASA)(NASA)(NASA),与其他几家研究机构合作。在同时,该部门是能源技术创新的领导者,该创新与核裂变和融合,地热技术,石油和天然气以及可再生能源有关。在17个设施中,有10个由科学办公室(SC)管理,包括AMES国家实验室,Argonne National Laboratory,Brookhaven国家实验室,Fermilab,Fermilab,Lawrence Berkeley国家实验室,Oak Ridge国家实验室,太平洋西北国家实验室,西北国家国家实验室,普林多尼族人Plasma Plasma Pallac Pallac Pallac Pallac National Accelorator,SLAC National Accelorator jefferator jefferator jefferator,Thom。每个国家实验室优先考虑一项或多项基础研究计划,包括先进的科学计算研究(ASCR),基本
niobium超导射频(SRF)用于高能加速器应用的腔体已通过诸如氮掺杂等技术的质量因子Q大大改善。但是,Q的指导改进仍未完全理解。最近,Fermilab的SRF组在过渡温度附近的N掺杂SRF Niobium腔的频移中测量了异常。在这里,我们根据超导性的显微镜理论报告了我们对这些结果的理论分析,该理论结合了SRF空腔筛选区域中超导间隙和不均匀疾病的各向异性。我们能够计算频率移动异常非常接近KHz分数的t c。我们的频移和Q的结果与Bafia等人报告的所有四个N-Doped NB SRF腔报告的实验数据非常吻合。我们还将我们的理论与以60 GHz测量的NB样本进行的早期报告进行了比较。此外,我们还表明,理论上计算的质量因子具有上凸的峰值,在中等水平的疾病中,最大的Q具有最大的Q。强障碍,即肮脏的极限,在存在障碍的情况下对破裂和筛选电流限制了Q。
粒子物理学有着宏伟的目标,即揭示现实的最基本成分,并破译这些成分相互作用的规则。这些规则包括量子力学,而基本成分似乎是量子实体。例如,在标准模型中,我们讨论相对论量子场的激发,这些场以固定的量子数(如质量、自旋和各种电荷)为特征。此外,在粒子物理实验中,我们有能力产生某些量子数的量子叠加态。例如,费米实验室各种光束中由介子衰变产生的(μ 子)中微子处于(至少)三个不同中微子质量本征态的量子叠加态中,并且该叠加态会随着通常的量子幺正时间演化而变化,由算符 exp (− 𝑖𝐻𝑡 ) 表示,其中 𝐻 是中微子哈密顿量。因此,中微子振荡实验是研究宏观尺度上量子信息时间演化的一个例子。
粒子物理学有着宏伟的目标,即揭示现实的最基本成分,并破译这些成分相互作用的规则。这些规则包括量子力学,而基本成分似乎是量子实体。例如,在标准模型中,我们讨论相对论量子场的激发,这些量子场以固定的量子数(如质量、自旋和各种电荷)为特征。此外,在粒子物理实验中,我们有能力产生某些量子数的量子叠加态。例如,费米实验室各种光束中由介子衰变产生的(μ 子)中微子处于(至少)三个不同中微子质量本征态的量子叠加态中,并且该叠加态会随着通常的量子幺正时间演化而变化,由算符 exp (− 𝑖𝐻𝑡 ) 表示,其中 𝐻 是中微子哈密顿量。因此,中微子振荡实验是研究宏观尺度上量子信息时间演化的一个例子。
散裂源已从准备和调试阶段转入全面工厂模式。我们的 SuRF 实验室设施一直在不停地准备、测试和重新清洁射频腔(必要时),现在我们已将大部分射频腔交付给法国团队,由他们组装成低温模块。这是一个细致的过程,需要非常高水平的质量保证和文档。我们的辛勤工作意味着我们的法国同事一直有大量的腔体可用,让他们忙个不停!随着这项活动的结束,SuRF 实验室将转变为不仅为美国费米实验室的质子改进计划 II 提供合格超导射频腔的区域,而且也是我们组装容纳这些腔体的长低温模块的区域。为达到这一点,我们已经为这项活动做了大量准备工作,包括启动材料和腔体的采购。在达斯伯里实验室的其他地方,ASTeC 一直负责交付用于大型强子对撞机高亮度升级的短蟹腔低温模块原型。紧接着将进行生产模块的组装。同样,这是一项紧张的活动,将在国际上产生巨大影响。
