边界算子是一个线性算子,它作用于一组高维二元点(单纯形),并将它们映射到它们的边界上。这种边界图是许多应用中的关键组件之一,包括微分方程、机器学习、计算几何、机器视觉和控制系统。我们考虑在量子计算机上表示完整边界算子的问题。我们首先证明边界算子具有特殊结构,形式为费米子产生和湮灭算子的完全和。然后,我们利用这些算子成对反对换的事实来生成一个 O(n) 深度电路,该电路精确实现边界算子,而没有任何 Trotterization 或泰勒级数近似误差。错误越少,获得所需精度所需的拍摄次数就越多。
1强相关的系统“Lendület”研究小组,固态物理和光学研究所,Wigner Physics研究中心,29-33,Konkoly-Thege Mikl´os Str。 Str。,H-1121,布达佩斯,匈牙利3 MTA-BMELENDület量子信息理论研究小组,布达佩斯,匈牙利4数学研究所,布达佩斯特大学技术与经济学大学,邮政信箱91 H-111 H-111,布达佩斯,匈牙利匈牙利5个复杂系统部,匈牙利5号,Eötvvöslorándhehnd of Box 32,捷克共和国科学学院物理化学研究所,V.V.I.,Dolejsˇkova 3,18223 Prague 8,捷克共和国7物理学学院,Arnold Sommerfeld理论物理学中心(ASC),Ludwig-Maximilians-Maximilians-universitätmuniversitätmunverit;37, 80333 München, Germany 8 Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany 9 Wolfson College, University of Oxford, Linton Rd, Oxford OX2 6UD, United Kingdom 10 Fachbereich Physik, Philipps-Universität Marburg, Marburg 35032, Germany
二次汉密尔顿人在量子场理论和量子统计机械方面很重要。他们的一般研究可以追溯到六十年代,对于此处研究的费米子病例,相对不完整。在Berezin之后,它们在Fermionic场上是二次的,以这种方式,作用于Fermionic Fock空间的精心设计的自我接合操作员。我们通过在伴侣论文中研究的一个粒子希尔伯特空间上应用新颖的椭圆算子值的微分方程来分析它们的尿量化。这允许在比以前弱的假设下(N - )对角度化。最后但并非最不重要的一点是,在1994年,Lieb和Solovej将它们定义为强烈连续的Bogoliubov转型群体的产生者。,一旦真空状态属于这些哈密顿人定义的领域,这就是同等的定义。这第二个结果被证明让人联想到Bogoliubov转换的著名页岩刺激条件。
驱动的多体问题仍然是量子力学中最具挑战性的未解决问题之一。量子计算机的出现可能为有效模拟此类驱动的系统提供了独特的平台。但是,对于如何设计水库有很多选择。可以简单地用Ancilla Qubits充当储层,然后通过算法冷却进行数字模拟。一种更具吸引力的方法,它允许人们模拟有限的储层,它是整合自由度的浴室,并通过主方程来描述驱动的散文系统,该系统也可以在量子计算机上进行模拟。在这项工作中,我们考虑了由电场驱动并耦合到费米子恒温器的晶格上的非相互作用电子的特殊情况。然后,我们提供两个不同的量子电路:第一个使用Trotter步骤重建系统的完整动力学,而第二个则在单个步骤中消散了最终的非平衡稳态。我们在IBM量子体验上运行两个电路。对于电路(i),我们最多达到了5个trotter步骤。当部分重置在量子计算机上可用时,我们希望最大的模拟时间可以显着增加。此处开发的方法提出了可以应用于模拟相互作用驱动的系统的概括。
摘要。费米子模式的算子代数与量子位的构成同构,它们之间的差异是双重的:一方面与模式子集和多Quembit子系统相对应的子代理的嵌入,另一只手的偶然性子系统,另一方面是奇偶校的超选择。我们从量子信息理论的角度从连贯的,独立的,教学的方式进行了连贯的,独立的,教学的方式来广泛讨论这两个基本差异,并通过约旦 - 温和派代表来说明这些差异。我们的观点使我们开发了有用的新工具来治疗费米子系统,例如费米(Quasi)张量产品,费米子的典范嵌入,费米子部分痕迹,地图的效率和图像嵌入图。我们通过直接,易于适用的for-mulas(无模式排列)来制定这些模式的分区。还表明,费米子还原状态可以通过含有适当的相因子的费米子部分迹线来计算。,如果施加了平等超选择规则,我们还考虑了费米子模式相关性和纠缠概念的变体,可以赋予通常的基于本地操作的动机。我们还阐明了与关节图扩展有关的其他一些基本要点,这使得在费米米奇系统的描述中不可避免地取代了平等。
摘要 相对论费米子场论构成了所有可观测物质的基本描述。最简单的模型为嘈杂的中型量子计算机提供了一个有用的、经典可验证的基准。我们计算了具有四费米子相互作用的狄拉克费米子模型在 1 + 1 时空维度的晶格上的能级。我们采用混合经典量子计算方案来获得该模型中三个空间位置的质量间隙。通过减轻误差,结果与精确的经典计算非常一致。我们的计算扩展到手性对称出现的无质量极限附近,但在这个范围内量子计算的相对误差很大。我们将结果与使用微扰理论的分析计算进行了比较。
我们提出了使用局部费米模式(LFM)而不是Qubits的通用量子计算机的实际实现。该设备由量子点组成 - 由混合超导岛和点之间的可调电容耦合耦合。我们表明,对库珀对拆分,弹性共同努力和库仑相互作用的连贯控制实现了由Bravyi和Kitaev [1]定义的通用量子门集。由于与电荷Quber的相似性,我们预计电荷噪声将是反应的主要来源。出于这个原因,我们还考虑了一种替代设计,量子点与超导体具有可调耦合。在第二次设备设计中,我们表明有一个最佳位置,局部费米子模式是充电中性的,使设备对电荷噪声效应不敏感。最后,我们比较了设计及其实验局限性,并提出了未来克服它们的努力。
量子信息和量子多体物理学的一个特别有趣的接口是研究量子电路,它代表量子粒子或材料物理学中系统的(幺正)时间演化。这些电路最基本的形式是“砖墙”电路,其属性由代表墙上一块砖的 2 量子比特门的选择决定。这种类型的研究通常选择两种极端选择之一:要么假设随机选择 2 量子比特幺正([ 1 ] 及其参考文献),要么相反,选择一个结构化的 2 量子比特门,从而对幺正砖墙 (UBW) 电路进行一定程度的分析控制。事实上,如果将 2 量子比特门选为满足杨-巴克斯特恒等式的所谓 R 矩阵,则可以安排相应的 UBW 电路,使其作为算子与大量守恒电荷进行交换。请参阅 [ 2 – 4 ],其中提出并分析了此过程;[ 5 – 7 ],其中研究了此类电路以及与“可积 trotterization”相关的一系列物理现象。参考文献 [ 8 ] 特别将这些想法应用于 XXX 可积自旋 1/2 海森堡磁体的 R 矩阵,并分析了其守恒电荷,包括解析分析和量子计算硬件上的实现。我们指出了利用类似概念的其他实验 [ 9 , 10 ]。