使用十二烷基硫酸钠(SDS)和高纯度分析级硝酸盐,通过化学共沉淀法在控制温度下合成磁钴铁素纳米颗粒(NP)。合成的材料的特征是研究的X射线衍射(XRD),扫描电子显微镜(SEM)和傅立叶变换红外辐射(FTIR)技术。样品在850 0 c烧结5H。X射线衍射分析证实了用公式AB 2 O 4的单相立方尖晶石结构的形成。在四面体(A位点)和八面体(a-o,b-o)上的晶格常数,X射线密度,结晶石大小,位置半径(R a,r b),键长(A-O,B-O)上的四面体(A位点)和八面体(b site)在样品中计算出来。晶格常数和结晶石尺寸分别为8.361 A 0和27 nm。FTIR光谱在四面体和八面体部位分别在400 cm -1和800 cm -1的范围内显示了两个强吸收带。SEM研究表明,平均晶粒尺寸为0.25 µm,几乎是球形形状的微结构钴铁氧体纳米粒子。关键字:化学合成,纳米颗粒,结晶石大小,XRD,FT-IR,SEM。1。简介:铁磁性材料含有一种称为铁氧体的氧化铁。铁素体具有一个立方尖晶石相,具有通用式AB 2 O 4,其中A是二价金属离子,例如Ni,Zn,Mn,Mn,Cu,Ca,Ca,Co,Mg,Mg和B是Fe,Sm,sm,sm,gd,la,ce,等等的三价金属离子。该结构中氧离子的排列提供了四面体(a)和八面体(b)位点。许多阳离子优先占据了其中一个位置。居住在8个四面体和16个八面体位置的阳离子在铁氧体的独特特征中具有重要作用。由于现代社会不断增长的需求,铁矿的微波特性现在需求很高。钴铁矿是微波工业中最常使用的材料,因为它们的高化学稳定性,机械品质,低成本和易于制造。他们的一般化学公式(AB 2 O 4)具有逆尖晶石结构,其一半占据了四面体A位点的铁离子,其余的以及钴离子,分布在八面体B点上。钴
近年来,碳相关材料被提出用于改善半导体基质中光生载流子的电荷分离和表面性能。碳相关材料可以作为助催化剂,增强污染物在表面的吸附,改善载流子的分离和光催化剂的稳定性,为光催化反应提供更多的活性中心。本综述总结了碳相关材料的制备和环境应用的最新进展。重点介绍了碳相关材料和磁性碳相关光催化材料的制备,这些材料在外部磁场净化过程后易于分离,并应用于降解不易生物降解的新兴污染物。本研究确定了四大类水污染物:农药、药品、工业化学品和重金属。其中,药品和酚类化合物是一类重要的持久性有机污染物。一些常用于人类健康的药物以及消毒剂在废水进水和出水中(净化过程后)几乎以不变的形式存在。它们的痕量(每升约几微克到几百纳克)检测和去除变得困难但重要,因为它们危及处理过的废水的再利用和水循环管理的可持续性。就浓度水平而言,这些化合物被归类为危险化合物,因为即使是痕量,也有可能对生物体产生生物累积、生物放大和毒性影响。到目前为止,已经报道了从水系统中去除药物和酚类化合物的各种方法。属于高级氧化过程 (AOP) 组的异相光催化是用于降解新兴污染物的最有前途的方法之一。引入磁性铁氧体改性的碳相关材料可以显著提高新兴污染物的降解效率。本综述为未来研究碳相关材料和磁性碳相关材料在去除活性药物成分和酚类化合物中的应用提供了连贯的信息。在碳基材料与磁性铁氧体结合以及它们与SR-(AOP)和Fenton- 结合存在下药物和酚类化合物光降解的见解
x cd x x fe 2 o 4(x = 0.00,0.01,0.01,0.03,0.05,0.07,0.09)由共同途径准备。准备后,样品在温度900°C下烧结6小时。不同的表征技术,例如XRD(X射线划分),FTIR(傅立叶转换 - 红外 - 光镜检查),UV-VIS。和IV-特征术用于探索掺杂元件(CD)对纳米粒子的电,结构和光学特性的影响。XRD数据证实了Fe2O3的第二阶段的材料的单相,平均晶体大小在38.09-45.15 nm的范围内。在8.4471Å到8.4763Å中发现的准备材料的平均晶格常数值。在FTIR数据中,在所有样本中都发现了一个突出的频段,在某些样品中,在400-4000cm-1的范围内发现了第二个频段。IV观察性揭示了DC抗药性对温度的依赖性以及在0.1365到0.4332 EV/1000K的范围内的活化能值(∆𝐸𝐸)的依赖性。紫外线。分析证实了平均波长286 nm的所有样品的吸收峰。在此波长吸收下,所有样品的吸收范围为2.8722-3.2956(A.U)。CD浓度负责减少饱和磁性和损耗的降低。由于合适的特性,这些材料在录制媒体,高频应用和电子工程等许多分支等不同领域都有用。(2024年10月16日收到; 2024年12月11日接受)关键词:纳米结构,共凝结法,XRD,晶体大小,电阻率,激活能量1.引言尖晶石铁氧体是一类带有通用式AB 2 O 4的磁性材料,其中A和B代表不同的金属阳离子,O是氧。它们具有称为尖晶石结构的立方晶体结构,以矿物尖晶石的名字命名。尖晶石铁氧体表现出磁性,电气和结构特性的组合,使其在广泛的应用中有用,包括磁性存储,变压器,电感器和生物医学设备[1]。
采用简单的化学氧化法在优化的实验条件下制备 MnFe 2 O 4 磁性纳米粒子 (MNPs)。通过在化学反应过程中引入铁离子作为尺寸减小剂来减小粒径。MnFe 2 O 4 MNPs 的饱和磁化强度在 45 到 67 emu/g 之间调整。透射电子显微镜 (TEM) 显微照片证实了粒度分布的变化。用较高浓度的铁离子制备的较小尺寸 MnFe 2 O 4 MNPs 实现了 415 F/g 的最高比电容。结果表明,铁离子可用于通过化学氧化法控制铁氧体的尺寸,并且尺寸减小的 MnFe 2 O 4 MNPs 可能是电化学超级电容器应用的合适选择。2020 Elsevier BV 保留所有权利。
背景:目前,没有任何商用现货 (COTS) 电感器材料或空心电感器能够令人满意地满足未来海军电力和能源系统在功率处理、效率、体积效率和温升方面的需求。这一不可否认的结论不仅需要新材料,还需要一种新的超高频材料设计范例,以捕获 250 MHz 或更高的带宽。需要专注于开发用于电感器的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感器。此外,截止频率和磁导率/磁化(电感器饱和电流)具有反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以更低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,具有更高磁导率的样品
背景:目前,没有任何商用现货 (COTS) 电感材料或空心电感能够令人满意地满足未来海军电力和能源系统在功率处理、效率、体积效率和热升方面的需求。这一无可否认的结论不仅需要新材料,还需要一种新的超高频材料设计范例,以捕获 250 MHz 或更高的带宽。需要专注于开发用于电感的新型磁性材料,着眼于将应用扩展到高频变压器,以提供高 SWAP+C2(尺寸、重量和功率加上成本和冷却)和可靠的超高频应用电感。此外,截止频率和磁导率/磁化(电感饱和电流)具有反比关系,与尖晶石铁氧体和合金中观察到的众所周知的趋势一致(即 Snoek 关系)。然而,更宽的带宽(即更高的截止频率)是以更低的磁导率和磁化为代价的,这意味着更低的功率处理能力、更高的损耗因子和对 SWAP+C2 的妥协。然而,具有更高磁导率的样品
2023 年,在 FRPS 下,获得 BMSCE 颁发的 2,00,000 卢比(仅二十万)资助,用于“使用尖晶石铁氧体作为吸附剂去除废水中的重金属”项目 2021 年,获得 TEQIP – III 项目提案资助,用于利用固体废物生物医学焚烧灰生产砖块 2019 年,获得钢铁部颁发的项目提案资助,用于印度 KIOCL 公司开展的“建筑业使用粉煤灰和底灰作为前体生产土聚物骨料的研究”。 2015 年,因项目提案“土工聚合物作为下一代土壤稳定剂”获得学生项目计划 (SPP) 资助,项目提案由印度班加罗尔卡纳塔克邦科学技术委员会 (KSCST)、IISc 提供 2014 年,因开展教师发展计划 (FDP)“腐蚀对混凝土基础设施及其耐久性的影响”获得 VTU-VGST 提供的 200,000 卢比 (20 万卢比) 资助 2014 年,因项目提案“用于制造粉煤灰骨料的托盘化技术”获得学生项目计划 (SPP) 资助,项目提案由印度班加罗尔卡纳塔克邦科学技术委员会 (KSCST)、IISc 提供
晶格、自旋和轨道自由度之间的相互作用。[1] 这些晶体可以容纳各种决定其性质的阳离子物种,从而产生不同的电子、磁性和光学行为。[2] 例如,它们的催化活性和性能可受到 A 位和/或 B 位阳离子取代或部分取代的显著影响。[3–6] 在众多用于催化应用的钙钛矿中,Sr 掺杂的镧铁氧体 (La 1 −xSr x FeO 3 ; LSFO) 在光催化水分解方面引起了特别的关注,[7–10] 其中 Fe 作为 B 位过渡金属阳离子驱动选择性氧化。 La 3 +阳离子被氧化态较低的阳离子(即Sr 2 +)取代,导致B阳离子部分氧化为氧化态较高和/或形成氧空位,从而产生更佳的催化活性。[10] 钙钛矿能够容纳多种取代基和掺杂剂,这为其组成和相关氧化态提供了很大的灵活性。这种可调性反过来又使得可以根据各种应用调整钙钛矿的物理化学性质,例如固体氧化物燃料电池(SOFC)中的阴极材料、非均相催化中的催化剂和氧载体、氧分离膜和固态气体传感器。[11]
• 在洁净煤技术方面,国际粉末冶金和新材料高级研究中心 (ARCI) 制备了一层薄金属陶瓷涂层,该涂层采用 HVAF 技术沉积在泵轴套的内外表面,用于组件级演示和 ODS 铁铝化物粉末填充罐(直径 72 毫米,长 200 毫米),共 7 个,并进一步交付给核燃料综合体进行镦锻和热挤压。在与低膨胀玻璃陶瓷 (LEGC) 设施和实现相关的 DRDO-ISRO 项目下,开发了一套用于激光陀螺仪应用的玻璃块,并交付给 DRDO 进行光学鉴定。• ARCI 于 2024 年 5 月 3 日与 M/s. Altmin Pvt Ltd., Hyderabad 签署了技术转让协议,用于制造锂离子电池的磷酸铁锂 (LFP) 阴极粉末材料(印度境内非独家权利)。 • 纳米和软物质科学中心 (CeNS) 的研究人员利用一种新型聚合物纳米复合材料制造了柔性压电能量发生器和道路安全传感器。原型设备显示出出色的功率密度。作为道路安全和智能门传感器的实时演示证明,这种新型聚合物纳米复合材料将成为开发高效、灵活和灵敏的能量收集和压力传感设备的潜在候选材料。 • 复合氧化物,尤其是尖晶石铁氧体,由于其可调节的物理化学性质,已成为传统二元氧化物半导体的有前途的替代品。CeNS 的研究人员开发了一种高性能 NOx 传感器,该传感器有可能通过利用 ZnFe2O4 (mZFO) 的混合尖晶石结构来克服现有传感设备的局限性。
材料科学 LTPC 2 0 2 3 总接触时数 - 60 先决条件 无 目的 本课程介绍了快速发展的材料科学领域的几个先进概念和主题。学生有望对该主题有所了解,并获得有关所需工程应用的材料选择和操作的科学理解。教学目标 1. 对先进材料、它们的功能和特性在技术应用方面获得基本的了解 2. 强调材料选择在设计过程中的重要性 3. 了解生物材料的主要类别及其在现代医学中的功能 4. 熟悉纳米科学和技术的新概念 5. 让学生掌握仪器、测量、数据采集、解释和分析的基础知识 单元 I — 电子和光子材料(6 小时) 电子材料:费米能量和费米-狄拉克分布函数-本征和非本征半导体中费米能级随温度的变化-霍尔效应-稀磁半导体(DMS)及其应用 超导材料:常温和高温超导-应用。 光子材料:LED — LCD - 光电导材料 - 光探测器 - 光子晶体及应用 - 非线性光学材料及其应用的基本思想。第二单元 — 磁性和电介质材料(6 小时)磁性材料:基于自旋的磁性材料分类 - 硬磁材料和软磁材料 - 铁氧体、石榴石和磁铅石 - 磁泡及其应用 - 磁性薄膜 - 自旋电子学和器件(巨磁阻、隧道磁阻和庞磁阻)。