我们提出了一种新颖的方式,将灵活的,与上下文相关的约束集成为组合优化,通过将大型语言模型(LLMS)与传统算法一起使用。尽管LLM擅长解释细微的,当地指定的要求,但他们在执行全球组合可行性方面挣扎。为了弥合此间隙,我们提出了一个迭代的微调框架,其中算法反馈逐渐完善了LLM的输出分布。将其解释为模拟退火,我们引入了一个基于“粗糙可学习性”假设的形式模型,为收敛提供了样本复杂性界限。对调度,图形连接和聚类任务的经验评估表明,与基线采样方法相比,我们的框架平衡了本地表达的约束的灵活性和严格的全局优化。我们的结果突出了混合AI驱动组合推理的有希望的方向。项目代码:https://github.com/pranjal-awasthi/test time-ft
药物推荐系统在医疗保健中引起了人们的关注,因为它们的潜力根据患者的临床数据提供了个性化和有效的药物组合。但是,现有的方法论在适应多种电子健康记录(EHR)系统并有效地利用非结构化数据时会遇到挑战,从而产生有限的概括能力和次优性能。最近,利用医疗领域的大型语言模型(LLM)的兴趣正在增长,以支持医疗保健专业人员并增强患者护理。尽管出现了医疗LLMS及其在医疗问题回答之类的任务中,他们在临床环境中的实际应用,尤其是在药物建议中,但通常仍然没有得到充实的态度。在这项研究中,我们评估了用于药物建议任务的通用和医学特异性LLM。我们的发现表明,LLMS经常遇到过度处方的挑战,导致临床风险增加并降低药物建议精度。为了解决这个问题,我们提出了语言辅助药物建议(LAMO),该建议采用了一种参数高效的微调方法来量身定制开源LLM,以在药物建议方案中进行最佳性能。lamo杠杆在临床注释中提供了大量的临床信息,这是一种在传统方法论中通常不足的资源。由于我们的方法,Lamo的内部阀门准确性超过10%以上的最先前方法。此外,时间和外部验证证明了Lamo在各种时间和医院的强大概括能力
在2021年,美国有182,520例脑和中枢神经系统(CNS)癌症和2024年的25,400例新病例。通过磁共振成像(MRI)的早期检测可显着改善患者的预后。 这项研究微调一个残留的神经网络50版2(RESNET50V2),一种卷积神经网络(CNN),具有挤压和兴奋(SE)注意机制,以增强基于MRI的肿瘤分类,而不是基本的RESNET50V2模型。 通过合并SE块,该模型改善了特征优先级,有效区分神经胶质瘤(n = 901),脑膜瘤(n = 913),垂体肿瘤(n = 844)和无肿瘤(n = 438)。 经过公开可用的Kaggle数据集(n = 3,096)的培训,提议的模型达到了98.4%的分类精度,并且在接收器操作特性曲线(AUC)下的面积为0.999,其表现优于基本型号的92.6%精度,并且0.987 AUC。 在脑膜瘤(P = 0.013)和垂体肿瘤(p = 0.015)的分类精度中观察到在统计学上显着改善,这突出了SE模型分化肿瘤类型的卓越能力。 SE注意机制通过解决特征提取限制和医学成像中的长距离依赖性来提高诊断精度。 然而,仍然存在诸如数据集大小约束,过度拟合风险和潜在表示偏见之类的挑战。 未来的研究将着重于扩展数据集多样性,探索视觉变压器(VIT)以改善功能提取,并采用生成性对抗网络(GAN)进行数据增强。通过磁共振成像(MRI)的早期检测可显着改善患者的预后。这项研究微调一个残留的神经网络50版2(RESNET50V2),一种卷积神经网络(CNN),具有挤压和兴奋(SE)注意机制,以增强基于MRI的肿瘤分类,而不是基本的RESNET50V2模型。通过合并SE块,该模型改善了特征优先级,有效区分神经胶质瘤(n = 901),脑膜瘤(n = 913),垂体肿瘤(n = 844)和无肿瘤(n = 438)。经过公开可用的Kaggle数据集(n = 3,096)的培训,提议的模型达到了98.4%的分类精度,并且在接收器操作特性曲线(AUC)下的面积为0.999,其表现优于基本型号的92.6%精度,并且0.987 AUC。在统计学上显着改善,这突出了SE模型分化肿瘤类型的卓越能力。SE注意机制通过解决特征提取限制和医学成像中的长距离依赖性来提高诊断精度。然而,仍然存在诸如数据集大小约束,过度拟合风险和潜在表示偏见之类的挑战。未来的研究将着重于扩展数据集多样性,探索视觉变压器(VIT)以改善功能提取,并采用生成性对抗网络(GAN)进行数据增强。
运动技能学习使生物可以与环境有效相互作用,并依靠将感觉反馈与电机输出相结合的神经机制。虽然感觉反馈(例如与运动动作相关的听觉提示)增强了人类运动性能,但其作用机理的理解很少。开发可靠的增强运动技能学习动物模型对于开始剖析这种增强的生物系统至关重要。我们假设在运动任务期间连续的听觉反馈将促进小鼠的复杂运动技能。我们使用DeepLabcut开发了一个闭环系统,以实时无标记跟踪鼠标前爪动作,并具有高处理速度和低延迟。通过将前言的动作编码到不同频率的听觉音调中,小鼠在到达任务期间接收了连续的听觉反馈,需要将左前爪垂直位移到目标。成年小鼠在4 d培训中接受了听觉反馈或没有反馈的培训。与对照组相比,接收听觉反馈的小鼠表现出明显增强的运动技能学习。对轨迹的聚类分析表明,在运动训练的第2天之前,听觉反馈小鼠建立了一致的到达轨迹。这些发现表明,实时,运动编码的听觉反馈有效地促进了小鼠运动技能。这种闭环系统利用高级机器学习和实时跟踪,为探索运动控制机制和通过增强的感觉反馈开发运动障碍的治疗策略提供了新的途径。
从第一原理的角度来看,基础模型微调(FT)的最强结果是通过相对较高的两阶段训练程序实现的。具体来说,第一次训练某些数据集上的奖励模型(RM)(例如,人类的偏好)在使用它作为向下流增强学习(RL)过程的一部分提供在线反馈之前,而不是通过离线最大可能性估计来直接优化数据集中的策略参数。实际上,从信息理论的角度来看,我们只能通过通过奖励模型来丢失信息,并且不能通过policy采样来培养任何新信息。为了解释这种差异,我们通过理论和经验镜头对RL的价值进行了几个假设。考虑到假设的考虑,我们找到了对解释的最大支持,即在具有一代验证差距的问题上,从偏好数据中学习相对简单的RM(验证者)的易用性结合在一起,再加上下游RL程序的能力,以便在线搜索范围(最佳)的范围(生成器)的范围(生成器)的范围(生成器)的范围(生成器)的范围是最佳的。英尺
准确的工具跟踪对于计算机辅助干预的成功至关重要。以前的努力通常会严格地对工具轨迹进行建模,从而俯瞰外科手术程序的动态性质,尤其是跟踪诸如身体外和相机外视图之类的场景。在解决此限制时,新的CholectRack20数据集提供了详细的标签,以三个角度说明多个工具轨迹:(1)术中,(2)体内和(3)可见性,代表不同类型的工具轨迹时间。这些细粒标签可增强跟踪灵活性,但也提高了任务复杂性。由于高视觉相似性,尤其是在同一类别的工具中,遮挡或重新插入身体后的工具仍然具有挑战性。这项工作认识到工具操作员在区分工具轨道实例中的关键作用,尤其是属于同一工具类别的工具轨道实例。但是,在手术视频中未明确捕获操作员的信息。因此,我们提出了Surgitrack,这是一种利用Yolov7进行精确工具检测的新型深度学习方法,并采用了注意机制来对工具的起源方向进行建模,作为其操作员的代理,以重新识别工具。为了处理各种工具轨迹的观点,Surgitrack采用了协调的两分匹配图,最大程度地减少冲突并确保准确的工具身份关联。cholectrack20的实验结果证明了外科手术的有效性,优于实时推理能力的最先进方法和最先进的方法。这项工作为手术工具跟踪设定了新的标准,为在微创手术中提供了更适合适应性和精确的帮助。
碳点(CDS)是一类低成本碳纳米材料的通用名称,最初在2004年报告,1个具有平均粒径低于10 nm的光致发光(PL)特性。2,由于其易于且廉价的合成,低毒性,6个高(水性)溶解度,光电特性,可轻松的修饰和稳定性,这种碳质材料对从生物成像到传感器,光电子的许多应用都具有吸引力,其含量为3-6。7当前生产CD的合成方法包括自上而下和自下而上的方法,这些方法通常提供各种大小的聚集石墨烯样层和较大的结构多样性,包括SP 2 / SP 3碳网络和以不同比率的氧气富官能组。结果,根据合成,CD的光致发光特性在量子产率上大大变化,从<1%到95%。在过去的十年中,已经报道了光激发波长依赖性和独立发射。8–11 CD的实验和理论研究表明,光致发光主要源于涉及SP 2碳的杂交轨道的π-π*过渡。
假设您有…•数据集d = {(x i,y i)} i = 1 n和n很小(即几次设置)•一个非常大的(数十亿个参数)预训练的语言模型,有两种“学习”
学习以场景图的形式从原始信息组成视觉关系是一项高度挑战的任务,这是由于上下文依赖性的,但是在依赖于场景所在的现场视觉应用程序中至关重要。但是,场景图生成(SGG)中没有当前的方法旨在为下流任务提供有用的图形。相反,主要重点主要是公开数据分布以预测更多细粒关系的任务。据说,所有的关系关系都不相同,至少其中一部分对现实世界应用没有用。在这项工作中,我们介绍了有效的SGG的任务,该任务旨在阐述相关关系的产生,从而促进了在下游任务(例如图像生成)中使用场景图的使用。为了支持进一步的方法,我们根据流行的Visual Genome数据集的注释提出了一个新的数据集,即VG150策划的新数据集。我们通过一组实验表明,该数据集包含比通常在SGG中使用的数据更高质量和多样的注释。最后,我们显示了从场景图1中生成图像生成的任务中该数据集的效率。