磁共振成像 (MRI) 是一种强大且多功能的成像方式,是许多研究不可或缺的组成部分,尤其是在进行定量分析时。MRI 是成像大脑的首选方法,因为它具有出色的软组织对比度。将大脑准确分割成解剖区域可以对大脑进行准确的定量分析。三个可以自动对人脑进行解剖分割的软件程序是 FreeSurfer、FastSurfer 和 MAPER。本研究的目的是使用 FreeSurfer 作为基线,并调查 FastSurfer 和 MAPER 分割与 FreeSurfer 在同一数据集上的输出的一致性。使用 FreeSurfer、FastSurfer 和 MAPER 对来自 IXI 数据集的 185 个 T1 加权 3D MR 图像进行分割。使用默认训练检查点对 IXI 数据集的 FastSurfer 和 FreeSurfer 输出以及相应的大脑 MR 图像作为 MAPER 的源图谱。然后使用 Jaccard 相似系数将 FastSurfer 和 MAPER 分割与 FreeSurfer 分割进行比较。MAPER 在复制符合 FreeSurfer 的皮层下区域输出方面表现优于 FastSurfer。MAPER 和 FastSurfer 在皮层区域的表现类似。
4 我们在 R 中使用了随机森林包,并采用了默认的超参数值。5 在这里,数据选择由用于评估性能的相同标准驱动。具体来说,Deep-SCAN 网络训练利用 FreeSurfer 脑分割结果。厚度与分割高度相关,而分割在相关软件包之间具有特征性差异。然后通过确定与 FreeSurfer 厚度值的相关性来评估与 ANTs 厚度(不使用 FreeSurfer 进行训练)的相对性能。几乎同样成问题的是他们使用可重复性(他们令人困惑地将其标记为“稳健性”)作为额外的排名标准。可重复性评估应在偏差-方差权衡等考虑因素的背景下进行,并使用相关指标进行量化,例如考虑观察者间和观察者内变异性的类内相关系数。6 https://bicr-resource.atr.jp/srpbs1600/
从 MRI 重建和分割皮质表面对于广泛的大脑分析至关重要。然而,大多数方法遵循多步骤的缓慢过程,例如连续的球面膨胀和配准,这需要相当长的计算时间。为了克服由这些多步骤引起的限制,我们提出了 SegRecon,这是一种集成的端到端深度学习方法,只需一个步骤即可直接从 MRI 体积联合重建和分割皮质表面。我们训练一个基于体积的神经网络来预测每个体素到多个嵌套表面的有符号距离以及它们在图谱空间中对应的球面表示。例如,这对于联合重建和分割白质到灰质界面以及灰质到脑脊液(软脑膜)表面很有用。我们通过在 MindBoggle、ABIDE 和 OASIS 数据集上进行的一组全面实验来评估我们的表面重建和分割方法的性能。我们发现,重建误差小于 0.52 毫米,而与 FreeSurfer 生成表面的平均 Hausdorff 距离则小于 0.97 毫米。同样,分割结果显示,与 FreeSurfer 相比,平均 Dice 值提高了 4% 以上,此外,在标准台式机上,计算时间从几小时大幅加快到几秒。
开发了一种工具,可以自动使用T1加权MRI作为输入的输入,从而自动分割了几个皮层下边缘结构(伏隔核,基础前脑,隔核,下丘脑,无乳腺体,乳腺体和福尼克斯)。此工具填写未满足的需求,因为很少有(如果有的话)可以分割这些临床相关结构。使用39个手动标记的MRI数据集对具有空间,强度,对比度和降噪的U-NET进行了训练。通常,相对于其他结构的可比工具,骰子得分,真实的正率,错误的发现率和手动自动体积相关性非常好。使用该工具对698个受试者进行了不同的数据集;对所得标签的评估表明,该工具在不到1%的情况下失败了。该工具的测试可靠性非常好。除乳腺体型以外的所有结构的自动分割体积都显示出在检测临床效果,年龄效应或两者兼而有之的有效性。此工具将与FreeSurfer(Surfer.nmr.mgh.harvard.edu/fswiki/sclimbic)公开发布。与其他皮质和皮层边缘分段一起,此工具将允许FreeSurfer以自动化的方式全面对边缘系统。
图4:管道生产的工作台场景,以评估注册和掩盖精度。分别通过细绿色和蓝色线条显示了自由表面的白色和曲面。ASL体积脑面膜轮廓显示在洋红色中。白色盒子表示ASL获取的视野,转变为ASL网格的T1W空间。青色线(在矢状视图中在小脑的底部看到)表示位于视野外的ASL脑面膜的一部分。Greyscale中的基本图像是完整335
编码语言:Python(Anaconda、Colab)、MATLAB、R、Basic、C、C#。 WebDev:HTML、CSS、JS、PHP 操作系统:Windows、Ubuntu/Debian 机器学习算法编程(Tensorflow、SciPy)、数据挖掘、统计分析(LME 模型) 多模态生物信号处理和分析专家(如光学、电学、基于阻抗) 转化临床研究 使用 3D 打印进行原型设计(SLA、SLS、RAISE3D、Lulzbot) 软件:Monday.com、CED Spike 2、RedCap、FreeSurfer、Microsoft Office suite、Statistica、Prism、Rstudio、Adobe 机械设计和 FEA 分析(SolidWorks Suite) 设计和实施 IRB 批准的人体实验 语言:精通法语(母语)和英语,中级西班牙语和日语
以便更好地确定脑干外科手术的安全进入区。12、13然而,这种整体方法没有考虑到病理学中经常发生的解剖扭曲(即没有人对正常脑干进行手术)。不幸的是,大多数基于立体定向成像的脑图谱都强调了皮质、白质或间脑内特定功能性神经外科手术目标的分辨率。14-18基于图像的脑干内部解剖详细分区仍然很少。19、20广泛使用的FreeSurfer(http://surfer.nmr.mgh.harvard.edu)分区为整个脑干提供了单个图谱标签,而较新的脑干子结构算法仅将脑干分为“中脑”、“脑桥”和“延髓”。21-23
以便更好地确定脑干外科手术的安全进入区。12、13然而,这种整体方法没有考虑到病理学中经常发生的解剖扭曲(即没有人对正常脑干进行手术)。不幸的是,大多数基于立体定向成像的脑图谱都强调了皮质、白质或间脑内特定功能性神经外科手术目标的分辨率。14-18基于图像的脑干内部解剖详细分区仍然很少。19、20广泛使用的FreeSurfer(http://surfer.nmr.mgh.harvard.edu)分区为整个脑干提供了单个图谱标签,而较新的脑干子结构算法仅将脑干分为“中脑”、“脑桥”和“延髓”。21-23
结果:所提方法表现出更好的泛化性能,可以获得对所有结构的稳定准确率,而最新的深度学习方法对于某些结构的准确率极低。所提方法对所有样本都进行了分割,准确率明显高于传统方法,例如 3D U-Net、FreeSurfer 和脑功能性磁共振成像 (FMRIB) 软件库中的集成配准和分割工具 (FSL-FIRST)。此外,当将所提方法应用于较大的数据集时,可以对所有样本进行稳健的分割,而不会在明显不同于解剖相关区域的区域产生分割结果。另一方面,FSL-FIRST 对大约三分之一到四分之一的数据集在明显不同于解剖相关区域的区域产生了分割结果。
这里我们介绍了一种从多发性硬化症患者的多对比度脑 MRI 扫描中同时分割白质病变和正常神经解剖结构的方法。该方法将一种新的白质病变模型集成到之前经过验证的全脑分割生成模型中。通过使用单独的解剖结构形状及其在 MRI 中的外观模型,该算法可以适应使用不同扫描仪和成像协议获取的数据而无需重新训练。我们使用四个不同的数据集验证了该方法,在同时分割数十个其他脑结构的同时,显示出在白质病变分割方面的稳健性能。我们进一步证明,对比度自适应方法也可安全地应用于健康对照的 MRI 扫描,并复制之前记录的 MS 深层灰质结构萎缩模式。该算法作为开源神经成像包 FreeSurfer 的一部分向公众开放。