结果:所提方法表现出更好的泛化性能,可以获得对所有结构的稳定准确率,而最新的深度学习方法对于某些结构的准确率极低。所提方法对所有样本都进行了分割,准确率明显高于传统方法,例如 3D U-Net、FreeSurfer 和脑功能性磁共振成像 (FMRIB) 软件库中的集成配准和分割工具 (FSL-FIRST)。此外,当将所提方法应用于较大的数据集时,可以对所有样本进行稳健的分割,而不会在明显不同于解剖相关区域的区域产生分割结果。另一方面,FSL-FIRST 对大约三分之一到四分之一的数据集在明显不同于解剖相关区域的区域产生了分割结果。