冷凝可能会导致墙壁和家具上的潮湿区域。因此,霉菌在这些潮湿的斑块上生长,原因是霉味,看起来难看,如果不处理,则可能导致进一步的并发症。霉菌是一种真菌,一种简单的植物,可以在水分的任何地方生长。模具可以以黑色针刺在墙壁,天花板和家具上的形式出现,并且通常有发霉的气味。这通常很明显,并且在存在凝结并且缺乏适当通风的情况下存在。
与可卡酰储存腐烂相关的真菌生物包括尼日尔曲霉,富沙鲁伊姆索拉尼,霍博迪普迪奥伯罗瘤,fusariumoxysporum,cortiumroffsii; Geotrichum Candida和Rolfsii [11]。叶枯萎病的早期阶段的特征是形成了小的,圆形的棕色至橄榄绿色的斑点。Graham [12]报告说,这种真菌在潮湿的天气下活跃。在叶子上产生的孢子并在风和雨水中散布到附近的植物或更长的距离新花园的距离。在这两种情况下,真菌都会杀死叶子和棕色斑点的细胞。斑点扩展非常快,并产生黄色边缘,红棕色的液滴在下面的地下发育中,液滴干燥为深色颗粒。感染可能发生在叶表面的任何地方,但通常从雨水收集的边缘开始。感染了几天后,可以在该地点边缘附近看到一个白环。这是产生孢子的区域。但是,孢子在阳光下迅速干燥,到了早晨,它们会萎缩并死亡。他们只有在多云或下雨时才能活着。除了风之外,疾病的传播可能以其他方式发生,例如种植被感染的叶子的吸盘或种植材料的茎,可能会在潮湿的天气中切成薄片时在切割的末端进行茎,以便在茎上修剪茎。
均衡性被长期感染了寄生虫线虫。有关于马势力的丰富文献,但是它们很难在形态学上识别出关于感染其他等均等物种的强叶的遗传研究很少,这阻碍了对宿主特异性的研究。,我们对肯尼亚中部两个同胞斑马种的蠕虫进行了排序,以扩大强烈的系统发育,并使用对粪便样品上的DNA metabarcodode进行了遗传表征斑马nemabiomes的遗传表征。我们生成了新的与公共遗传参考数据库的几种物种的序列,所有这些物种都是野生斑马中的典型强人(即,三种cylopharynx和Cyathostomum montgomeryi),并确定了其最亲密的亲戚。我们还发现了一种明显的真菌感染了四分之一的被驱逐的crossocepephalus viviparus蠕虫,这是Atractidae家族中的过度生物线虫物种,暗示了Zebra宿主 - 寄生虫动力学可能涉及Zebra-parasite动力学的可能性。这两个斑马物种具有类似的五个斑马生物。我们在它们所携带的线虫物种列表中发现了一个完全重叠的重叠,并且针对不同线虫物种非常相似的患病率(即受感染的宿主的比例)。我们的研究表明,斑马强的宿主特异性有限,并且在平原斑马和濒危的格雷维(Grevy)的斑马之间进行跨跨任务的高潜力。
我的研究领域主要集中于鉴定来自医学重要的植物的生物活性化合物,并专注于人类疾病。由于细菌,真菌和植物系统中的耐药性问题而引起的。开发用于控制细菌,真菌和病毒病原体的代谢产物,通常在抗生素治疗后作为继发感染出现。主要探索了药物植物的许多铅化合物,对细菌,真菌和病毒感染以及人类健康的影响。
➢ 强降雨会造成土壤侵蚀,冲走宝贵的表土,危害农业。 ➢ 过多的降雨会导致播种和收获延迟。 ➢ 强降雨会抑制植物根部的生长。 ➢ 过多的降雨会导致缺氧和养分流失,从而导致农作物减产。 ➢ 湿度过高会导致农作物滋生病虫害和真菌。 ➢ 杂草生长增多。 ➢ 长时间暴露在强风中会导致形态变化。
«鉴定候选基因的定量抗性,是由真菌外交斑rosae»irhs Angers引起的 - “装饰植物的遗传学和多样性”的目的:表征耐药性玫瑰基因型,广泛用于繁殖级别,从表型级别到繁殖水平,从而更好地相互作用,并获得了工厂的互动,并获得了植物互动的理解。RNASEQ数据分析(FastP,FastP,Salmon,R packages deseq2,DegReport),KASP标记的设计,QTL分析(JoinMap,r/QTL),显微镜
木霉是一种广泛分布于世界各地的世界性真菌。这种有益真菌在农业、纺织和造纸等多个行业(包括制药行业)中有着不同的用途。木霉属还有其他作用机制,包括产生用于不同行业的不同酶和分泌的次生代谢物。已对不同木霉种的基因组进行了测序,以确定产生几种化合物的机制。多种技术的进步使得开发出用于木霉遗传改良的转化工具成为可能,从而增加了生物量、初级和次生代谢物以及酶。因此,基因改造旨在增加几种木霉菌株的化合物产量。通过基因表达分析对木霉进行表征对于生物技术应用至关重要。它有助于应对当今农业面临的最具挑战性的问题之一,包括气候变化和攻击商业和食品需求量大的作物的病原体的出现。总之,本综述分析了从基因上改良木霉菌株的各种策略及其在农业、纺织、造纸和制药行业的多种应用。作为对未来具有潜在影响的研究的建议,建议优化木霉菌株中的特定基因改造,以提高其适应性和应对农业新挑战的有效性,尤其是与气候变化相关的挑战。研究转基因木霉菌株与环境可持续农业实践之间可能产生的协同作用可能有助于开发作物保护和产量提高的解决方案。
摘要 青霉病是影响大蒜采后的主要病害之一。2023年,该病害在泰国清迈府的大蒜[Allium ampeloprasum var. ampeloprasum (Borrer) Syme]采后储藏期间被发现。从大蒜中分离得到3个真菌分离株,根据形态特征和核糖体DNA内部转录间隔区(ITS)、β -微管蛋白(BenA)、钙调蛋白(CaM)和RNA聚合酶II第二大亚基(rpb2)基因组合序列的系统发育分析,鉴定为大蒜青霉菌(Penicillium allii)。在致病性测定中,接种分离真菌的大蒜表现出与采后储藏期间观察到的症状相似的症状。在杀菌剂筛选试验中,多菌灵、苯醚甲环唑 + 嘧菌酯和苯醚甲环唑在半剂量和推荐剂量下均能有效完全抑制该真菌,而该真菌对克菌丹和代森锰锌不敏感。此外,多菌灵、氧氯化铜、苯醚甲环唑与嘧菌酯的组合以及苯醚甲环唑单独使用时,双倍推荐剂量可完全抑制该真菌。据我们所知,这是泰国首次报道由 P. allii 引起的大蒜鳞茎采后蓝霉病。此外,杀菌剂敏感性筛选的结果有助于制定有效的管理策略,以控制由 P. allii 引起的大蒜鳞茎采后蓝霉病。
抽象的曲霉曲霉被认为是负责引起疾病并损害食物和饲料商品的真菌之一。这种真菌能够产生对人和动物都有有毒特性的霉菌毒素。A. flavus的污染跨越了广泛的范围,从田间种植开始,一直延伸到存储设施。一种管理这种真菌的替代方法涉及其增长环境的修改。微生物固有地具有最低水活性(W)对其代谢过程至关重要的价值。这项研究的目的是修改A W值以抑制A. flavus的生长。这项研究是使用补充甘油和蒸馏水的PDA培养基在体外进行的,以建立0.90、0.92、0.95和0.97的W条件。在孵化后的第七天,结果表明,对于0.90,a表现出对氟曲霉生长的显着抑制作用,平均菌落直径为1.34 mm,其次是0.92,然后0.92为1.54,然后0.95为1.83 mm,0.97为1.97 mm。相反,使用0.90的治疗显示最低的抑制作用(1.34 mm),0.97的抑制作用显示最高(1.84 mm)。所有改良的水活性处理都对黄曲霉的生长产生了影响。随着A W值的降低,A. flavus的生长变得越来越受到限制。关键字:曲曲霉,水活动(A W),菌落直径
