提高充电电压并采用高容量的阴极(如锂钴氧化物(LCO))是扩大电池容量的有效策略。高压将揭示主要问题,例如电解质的低界面稳定性和弱电化学稳定性。从物质基因工程设计的角度设计高性能固体电解质至关重要。在这种情况下,构建了稳定的SEI和CEI界面层,并通过聚合物分子工程产生了4.7 V高压固体共聚物电解质(PAFP)。As a result, PAFP has an exceptionally broad electrochemical window (5.5 V), a high Li + transference number (0.71), and an ultrahigh ionic conductivity (1.2 mS cm − 2 ) at 25 ° C. Furthermore, the Li||Li symmetric cell possesses excellent interface stability and 2000 stable cycles at 1 mA cm − 2 .LCO | PAFP | LI电池在1200个周期后具有73.7%的保留能力。此外,它在高充电电压为4.7 V时仍然具有出色的循环稳定性。上面的这些特性还允许PAFP在高负载下稳定运行,显示出极好的电化学稳定性。此外,提出的PAFP提供了对高压抗性固体聚合物电解质的新见解。
摘要: - 气候变化的加速影响促使全球努力减少整个行业的碳排放。数字操作虽然有效,但对碳足迹产生了重大贡献。通过神经网络(NN)和机器学习(ML)利用人工智能(AI)提出了一种变革性的方法来预测和减轻这些排放。本文介绍了一个用于利用AI减少数字操作中的碳足迹的框架。通过整合神经网络和机器学习模型,该框架旨在预测碳排放,优化资源使用情况并为降低环境影响提供可行的见解。FURTHERMORE,该框架强调连续适应和改善对不断发展的环境数据和操作变化的重要性。由于AI模型暴露于更多样化和动态数据,因此它们变得越来越擅长识别可能表明排放或效率低下的趋势和异常。通过合并实时监控和反馈机制,该框架确保了数字操作可以迅速应对新兴挑战,从而使其成为反对气候变化的积极工具。最终,AI的整合不仅有助于组织减少其碳足迹,而且还可以推动创新更加绿色,更可持续的数字技术,这些技术可以为碳中性的未来铺平道路。
Immunotherapy has emerged as a promising cancer treatment option in recent years. In immune “ hot ” tumors, characterized by abundant immune cell in fi ltration, immunotherapy can improve patients ' prognosis by activating the function of immune cells. By contrast, immune “ cold ” tumors are often less sensitive to immunotherapy owing to low immunogenicity of tumor cells, an immune inhibitory tumor microenvironment, and a series of immune-escape mechanisms. Immunogenic cell death (ICD) is a promising cellular process to facilitate the transformation of immune “ cold ” tumors to immune “ hot ” tumors by eliciting innate and adaptive immune responses through the release of (or exposure to) damage-related molecular patterns. Accumulating evidence suggests that various traditional therapies can induce ICD, including chemotherapy, targeted therapy, radiotherapy, and photodynamic therapy. In this review, we summarize the biological mechanisms and hallmarks of ICD and introduce some newly discovered and technologically innovative inducers that activate the immune system at the molecular level. Furthermore, we also discuss the clinical applications of combing ICD inducers with cancer immunotherapy. This review will provide valuable insights into the future development of ICD- related combination therapeutics and potential management for “ cold ” tumors.
中亚(CA)是世界上最干燥的地区之一,其特征是它与海洋的距离,因此,稀缺的降水和稀疏的植被,其生态系统特别敏感且容易受到气候变暖(T. Chen等,2019)。CA经历了快速变暖(F. Chen等,2009; Z. Hu等人,2014年)在过去的一个世纪中,比全球土地平均水平快(Z. Chen等,2023; Fan等,2020)和其他地区,以及其他地区,例如南美,澳大利亚和中国(Fan et al。,2020; q。; q。; q。li et al。li et al。,2011)。Furthermore, the temperature increase exhibits seasonal patterns, with certain studies suggesting a more rapid rate of warming in spring (Z. Hu et al., 2014 ; Xu et al., 2015 ), while in other studies, winter was found to have the biggest contribu- tions to the annual warming (Huang et al., 2005 ; Peng et al., 2019 ; Trenberth & Josey, 2007 ).结论的差异可能是由于所使用的不同研究期和气候数据集引起的。因此,需要量化不同季节对年平均温度变化的相对贡献。
在本文中,基于高浓度下硅硅的分析建模,可用于硅酸盐在高浓度上的分析建模,适用于Boron扩散和二氧化硅的薄膜上的薄膜,这是基于大量微加工(BMM)技术的生物医学应用的设计和制造的先进结果,该硅电容传感器的生物医学传感器的设计和制造。The boron diffusion in silicon for the fabrication of the silicon capacitive sensors for biomedical applications and other Microelectromechanical Systems (MEMS) is a critical process, because the boron diffusion profile depends on the diffusion oxidizing (BBr 3 , B 2 O 3 )/non-oxidizing (BN – Boron Nitride) sources, and furthermore, the subsequent etching速率(因此蚀刻时间)取决于硅体积中硼浓度C的深度分布x,因此对此曲线C(x)的精确模拟允许进行膜设计和制造的准确蚀刻过程。为此,为硼扩散和蚀刻过程提供了分析显式关系,适用于上述情况(BBR 3,B 2 O 3或使用),也适用于非线性扩散方程的一般溶液的一般形式,其溶液的一般形式具有与浓度C的扩散系数D的扩散系数D的扩散系数D的脉冲,以D〜C m(M M)的浓度(m - a - a - a sil difff contection dife contection) c = c(x),也作为反向关系x = x(c),以便于C.
According to the blueprint proposed in “2011 Honolulu Declaration”, “2012 Vladivostok Declaration”, “2013 Bali Declaration”, and “2014 Beijing Declaration”, the innovative growth strategy is closely related to regional cooperation, human resource exchange, and infrastructure development. APEC leaders committed to fostering a pragmatic, efficient and vigorous partnership on STI. In 2017, Leaders' Declaration emphasized the importance of innovation, science and technology as key drivers for economic growth and international trade and investment in the APEC region. Furthermore, APEC Putrajaya Vision 2040 which launched in 2020 indicates the APEC is in position to further advance the Bogor Goals. Guided by the goal of building an open, dynamic, resilient and peaceful Asia-Pacific community by 2040, APEC members will explore new frontiers for cooperation in the priority areas of trade and investment, innovation and digitalization, and strong, balanced, secure, sustainable and inclusive growth. The Vision states that APEC will foster an enabling environment that is market-driven and supported by digital economy and innovation, and pursue structural reforms and sound economic policies to promote innovation as well as improve productivity and dynamism, which will empower all the people and businesses in the region to participate and grow in an interconnected global economy. Later on in 2021, APEC leaders adopted the Aotearoa Plan of Action as a plan for implementing the Putrajaya Vision 2040.
摘要:粘膜疫苗接种似乎适合防止SARS-COV-2感染。在这项研究中,我们测试了COVID-19的鼻内粘膜疫苗候选者,该疫苗由阳离子脂质体组成,该阳离子脂质体含有三聚体SARS-COV-2尖峰蛋白和CPG-ODN,CPG-ODN,Toll-Like受体9激动剂,作为辅助物。在体外和体内实验表明该疫苗配方鼻内给药后没有毒性。首先,我们发现皮下或鼻内疫苗接种保护HACE-2转基因小鼠免受野生型(Wuhan)SARS-COV-2菌株的感染,如体重损失和死亡率指标所示。然而,与皮下给药相比,鼻内途径在病毒的肺清除率中更有效,并诱导了较高的中和抗体和抗S IgA滴度。此外,鼻内疫苗接种为关注的伽马,三角洲和Omicron病毒变体提供了保护。Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL).最后,鼻内脂质体配方促进了先前肌肉内疫苗接种与牛津/阿斯利康疫苗诱导的异源免疫力,该疫苗比同源免疫更强大。
Satellites, now numbering over 10,000 as of 2024 [43], have transitioned from extraordinary space achievements to common orbital fixtures, especially with the surge in small satellites like CubeSats and nanosatellites. This accessibil- ity has allowed diverse entities, including universities and startups, to engage in space projects. However, the ease of developing these smaller satellites often comes at the cost of security, making them prone to cyberattacks. Teams be- hind these projects may lack comprehensive cybersecurity knowledge, leading to significant vulnerabilities. Furthermore, the evolving nature of cybersecurity means satellite software can quickly become outdated, with updates in orbit posing a challenge, as noted in research like Willbold et al. [47]. Concurrently, there has been a significant evolution in satellite on-board computing, particularly in processing power. This advancement enables small satellites to run full operating systems like Linux, a shift from the basic systems in earlier models. This technological progress enhances satellite func- tionalities but also adds complexity and vulnerability, neces- sitating stronger security measures. As systems become more sophisticated, they are more susceptible to threats, requiring a layered defense approach. Sandboxing is one of the effective methods to isolate software vulnerabilities and protect these advanced systems. In this paper, we discuss the process of selecting a sandbox- ing mechanism for a satellite project currently under develop- ment, named RACCOON [41]. The project's goal is to design
A novel, zero-waste and recycling plastic waste solution is introduced, to scalably produce graphene nanoplatelets/barium titanate (GNP/BaTiO 3 ) polymer nanocomposite fibrils.A comprehensive investigation is performed to evaluate the compatible and non-compatible recycled polypropylene (PP)/polyethyleneterephthalate (PET) blends combined with functional (electrical, piezoelectric,and dielectric) materials for in-situ fibril production.The nanocompositefibrils made from recycled PP, PET and GNPs/BaTiO 3 with high-aspect ratio disparity (400:1) are produced, which exhibit significantly enhanced electrical, thermomechanical, and electromagnetic characteristics.Single-screw extrusion is utilised to fabricate the fibrils with the in-situ fibril morphology of PET and GNPs/BaTiO 3 leading to improved electrical conductivity.It is demonstrated that such fibril morphology restricts the chain mobility of polymer molecules, and ultimately increases viscosity and strain energy.Moreover, the study demonstrates a positive reinforcement effect from the utilisation of PET fibrils and GNPs/BaTiO 3 in a PP matrix, dominated by the high-aspect ratio, stiffness, and thermal stability of GNPs/BaTiO 3 .Furthermore, it is observed that the mechanical properties and tension-bearing capacity of the PP are significantly improved by such incorporation.The study also demonstrates that the protection of the remanufactured nanocomposites against electromagnetic interference is significantly improved with the increasing GNPs/BaTiO 3 content and the morphological transition from spherical to fibril-shaped PET.
摘要。大量能源消耗吸引了利用可再生能源的关注,其中最重要的是在炎热气候中的太阳能应用,以满足冷却和功率的需求。本研究的新颖性在于在弹出器冷却循环中将瞬态自我分析应用于两个喷射器和两个蒸发器。Furthermore, the study uses solar data specific to Tehran in Iran.第三,通过吸收冷凝器热部位的废热,热电发电机系统提供了运行泵送和电气控制系统所需的能量,从而创建了一个完全自主的系统。Thermodynamic model have been designed using EES software.桑迪亚国家实验室(SNL)和国家可再生能源实验室(NERL)的结果验证了抛物线槽太阳能模型。The comparison with the experimental data collected by SNL during the LS-2 tests on the AZTRAK platform has shown good agreement.Weather conditions were analyzed as transients using Meteonorm software.The results show that the solar system produced the most heat in June and the least in December, with 816 kW and 262.3 kW, respectively.Additionally, production power and cooling in June are 5.9 kW and 86 kW, and in December: 2.7 kW and 28 kW.Regarding exergy destruction percentages, the solar collector has 86% and the storage tank has 6.5%.