近年来,随着半导体技术进入10nm以下技术节点,短沟道效应(SCE)和功耗耗散问题成为场效应晶体管进一步小型化面临的巨大挑战,需要采取强制性措施予以解决。从3nm技术节点开始,环绕栅极结构提高的SCE抑制能力使环绕栅极场效应晶体管登上了历史舞台。本文展示了双栅极纳米管环绕栅极场效应晶体管(DG NT GAAFET)的超强静电控制能力,并与具有相同器件参数设计的纳米管(NT GAAFET)和纳米线环绕栅极场效应晶体管(NW GAAFET)进行了比较。与NT GAAFET和NW GAAFET相比,DG NT GAAFET的I on 分别提升了62%和57%。此外,由于静电控制的增强,DG NT GAAFET 中的 SCE 得到了明显抑制,这可以通过改善 I off 、SS 和 I on /I off 比来证明。另一方面,NT GAAFET 的 I on 与 NW GAA-FET 相当,而与 NW GAA-FET 相比,它的 I off 小 1 个数量级,SS 小近 2 倍,体现了纳米管通道结构的优越性。最后,通过 TCAD 模拟研究验证了纳米管通道结构,特别是双栅极纳米管结构对 L g 缩放的稳健性。关键词:双栅极,纳米管,纳米线,短沟道效应,功耗耗散。
• 为开发具有“GAAFET”结构的集成电路而“专门设计”的“ECAD”“软件”不属于 ECCN 3D006 的范围,如果此类软件未经修改便用于开发以下集成电路:(1) 不具有 GAAFET 结构;(2) 处于“生产”状态;并且 (3) 仅因反恐原因而受管制或属于 EAR99 物品。请参阅:EAR 第 772.1 节“专门设计”定义的第 (b)(3) 段。 • 为开发具有“GAAFET”结构的集成电路而“专门设计”的“ECAD”“软件”不属于 ECCN 3D006 的范围,如果 (1) 该软件未经任何修改而开发时“知道”它将用于开发不具有 GAAFET 结构的集成电路,而这些集成电路仅因反恐原因而受管制或属于 EAR99;并且 (2) 有与软件开发同时期的文件,这些文件全部支持该设计意图。请参阅:EAR 第 772.1 节中“专门设计”定义的第 (b)(4) 款。• 符合 ECCN 3D006 开头定义的 ECAD 软件还必须满足管制物项清单第 (a) 或 (b) 款规定的标准。这些段落指的是业界称为布局布线的 EDA 软件,以及“RTL”到“GDSII”数字设计流程中的 RTL 综合软件。
许多参数 物理驱动的参数 拟合参数 参数提取可能相当麻烦 几乎不可能通过几何形状和掺杂分布进行设备优化 模型开发工作量很大 模型可用性有限(DG、TriGate、FinFET、GAAFET 等) 可扩展性值得怀疑 量子效应 非局部效应
10)2024年9月6日,美国商务部工业和安全局(BIS)宣布新规定,与盟友协调对量子计算、半导体制造和增材制造等先进技术的出口管制。该法规为某些技术引入了新的出口管制分类编号(ECCN),包括对实施同等管制的盟友的许可例外,并为 GAAFET 和量子技术提供一般许可,以及对某些技术的出口例外。这些变化旨在加强美国与其盟友的合作,促进先进技术的开发和部署。全球制裁和出口管制博客,贝克·麦坚时,“BIS 发布临时最终规则,使先进技术出口管制与某些盟友保持一致,并支持先进技术的发展,包括量子计算、半导体制造和增材制造”,2024.9.16.,https://sanctionsnews.bakermckenzie.com/bis-issues-interim-final-rule-to-align-export-controls-on-advanced-technologie s-with-certain-allies-and-to-support-development-of-advanced-technologies- including-quantum-computing-semiconductor-manu/#:~:text=The%20US%20Department%20of%20Commerce's,and%20additive%20manufacturing%20items%2C%20under
近年来,逻辑器件的量产技术已经发展到 3nm 技术节点[1]。未来,英特尔、三星、台积电将继续利用 2nm 技术节点的新技术,如环栅场效应晶体管 (GAAFET) [2,3]、埋入式电源线 (BPR) [4–8],来优化逻辑器件的功耗、性能、面积和成本 (PPAC)。然而,横向器件的微缩越来越困难,流片成本已令各大设计公司难以承受。同时,垂直器件将成为未来 DRAM 器件中 4F2 单元晶体管的有竞争力的候选者 [9–13]。关于垂直器件的研究报道很多,大致可分为两条路线。“自下而上”路线利用金属纳米粒子诱导催化,实现垂直纳米线沟道的生长 [14,15]。然而该路线存在金属元素问题,如金污染,与标准CMOS工艺不兼容。另外,通过光刻和刻蚀工艺“自上而下”制作垂直晶体管器件的方法已被三星和IBM报道[16,17]。然而该路线也存在一些问题,例如器件栅极长度和沟道厚度难以精确控制,并且该路线中栅极无法与垂直器件的源/漏对齐。为了解决上述问题,提出了基于SiGe沟道的垂直夹层环绕栅极(GAA)场效应晶体管(VSAFET),其在栅极和源/漏之间具有自对准结构[18–21]。最近,垂直C形沟道纳米片
摩尔定律的进步以及电子技术的不断发展和蓬勃发展的发展为综合电路(IC)行业提供了巨大的动力和挑战。[1]最先进的技术已将场效应晶体管(FET)的有效尺寸降低至低于10 nm,甚至均低于5 nm。同时,抑制短通道效应(SCE)并导致州外泄漏电流的增加已成为传统平面转换器的主要技术挑战。[2]创新的设备结构已开发出解决这些问题,包括FinFET,[3,4]全方位的FET(GAAFET),[5–7]多桥通道FET(MBC-FET)和互补的FET(C-FET)。[8-10]通道的增强栅极控制能力导致SCES和电流泄漏减少。finfet已成功地应用于低于10 nm的节点,同时面临由于扩展缩小的高度宽度比的技术挑战。[11]基于GAIFET的MBC-FET结构已成为下一代Sub-5 nm节点的有前途的候选人,C-FET将成为Sub-2 NM节点的强大替代品。但是,现有的基于SI的MBC和C-FET面临着诸如非均匀纳米片几何形状和驱动式折衷的挑战。[8]整合P-和N型FET的复杂处理也使整体集成非常困难,成为单个SI底物。[9,10]