诺贝尔化学奖(2019年给予)公认的锂离子电池(LIB)技术是无化石全球电源的基础。其高度吸引人的特性,例如上等能量密度,功率密度,出色的速率能力和较长的周期寿命,使其在各种设备中有用,包括便携式电子,电动汽车,储能系统,机器人技术,军事设备,紧急系统和医疗设备[1-3]。自1991年首次亮相以来,现代Libs通过以每年7-8 WH/kg的速度提高能量密度来提高电池的性能[4]。实现“碳中立性”的普遍概念促进了锂离子电池的大量研究和开发,锂离子电池是领先的干净二次电池技术。
利用可调动态纤维素纳米原纤维 (CNF) 网络制备高性能聚合物凝胶电解质。通过在酸性盐溶液中膨胀各向异性脱水但从未干燥的 CNF 凝胶,构建出一个高度稀疏的网络,其中 CNF 的比例低至 0.9%,充分利用了 CNF 的极高纵横比和超薄厚度(几微米长,2-4 纳米厚)。这些 CNF 网络暴露出高界面面积,可以将大量基于聚乙二醇的离子导电液体电解质容纳到强均质凝胶电解质中。除了增强的机械性能外,根据计算机模拟,CNF 的存在还由于其出色的强吸水能力而同时提高了离子电导率。这种策略使电解质的室温离子电导率达到 0.61 ± 0.12 mS cm −1,是聚合物凝胶电解质中最高的之一。该电解质作为磷酸铁锂半电池隔膜表现出优异的性能,具有高比容量(0.1C 时为 161 mAh g −1)、优异的倍率性能(5C)和循环稳定性(60°C 下 1C 下 300 次循环后容量保持率为 94%),以及稳定的室温循环性能,与商业液体电解质体系相比,安全性大大提高。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
抽象背景/目的:本研究的目的是设计和准备浮动原位凝胶,以维持卡维迪尔(CVD)释放并增强口服生物利用度。通过离子凝胶法制备了CVD的各种浮动原位凝胶制剂。材料和方法:采用制剂设计中的系统方法,使用羟丙基甲基纤维素(HPMC K4M),羟丙基纤维素(HPMC 100LV),硫酸钠,含Mimosa pudica pudica seed MiCOSIMA酸酸盐酸(SODICA)与各种浓度(SODICASIMA GIMACISMA gymoma gymoma gymoma gymoma gymoma gymoma gymoma,研究了碳酸氢盐的物理化学特性(体外浮动行为,药物释放概况等)。随后,基于物理化学特性涉及最终优化步骤,以实现所需的效果。结果:基于研究,HPMC K4M,HPMC 100LV,藻酸钠和Mimosa Pudica种子粘液(F17)表现出良好的浮动特性(60秒sec浮动滞后时间),药物释放的药物为96.98±2.1%,释放了12小时,该药物释放的序列均释放为ZERO,并释放了序列。在白化兔中F17的体内X射线研究表现出良好的浮动能力,最大为8小时。发现优化和对照(CARLOC)的生物利用度分别为41.95±0.8892μg.hr/ ml和26.36±1.1603μg.hr/ ml。用优化的配方进行了加速稳定性研究,并在研究期间观察到稳定。结论:得出结论,用天然聚合物开发的Carvedilol的原位原位凝胶适合GRDDS增强口服生物利用度。
免疫。它是一线防御,防止了外国微生物的殖民化并感染了殖民[1]。阴道微生物群(VM)通常随着年龄的增长而演变,并且受妇女生殖周期不同阶段以及种族背景,阴道灌肠或无保护性交(SI)的不同阶段的影响[1-3]。尽管它也可以在过渡过程中包含少量的真菌和寄生虫,但生殖年龄的健康VM主要由乳杆菌组成,而阴道失调(VD)的特征是乳酸杆菌SPP SPP优势的丧失和微生物多样性的丧失[4-6]。VM组成的这种变化增加了细菌性阴道病(BV),外阴阴道念珠菌病和有氧性阴道炎的风险[7]。最常见的VD特征是BV,这是由于厌氧菌细菌的过度生长引起的[5]。在18-30岁的女性中,VD的估计总体患病率为35.8%,其中32.2%呈现BV [4]。VD与性传播感染(性传播感染)有关,包括人类免疫缺陷病毒(HIV),骨盆炎性疾病(PID)以及不良妊娠结局,例如早产出生以及母体和新生儿感染[4]。目前,VD治疗主要基于抗生素和/或益生菌。尽管表现出良好的治疗作用,但这种疗法提出了重要的问题
摘要:使用新型 CRISPR/Cas12a 系统具有优势,因为它与常用的 CRISPR/Cas9 系统相比具有不同的特点,从而扩展了基因组编辑 (GE) 应用的可能性。在这项工作中,CRISPR/Cas12a 系统首次应用于苹果,以研究其在 GE 应用中的普遍可用性。通过体外切割试验预先筛选出针对内源报告基因 MdPDS 不同外显子的有效引导 RNA,该基因的破坏会导致白化表型。将一个构建体转移到苹果中,该构建体编码 CRISPR/Cas12a 系统,该系统同时靶向 MdPDS 中的两个基因座。使用荧光 PCR 毛细管电泳和扩增子深度测序,所有已鉴定的再生白化芽的 GE 事件都被描述为缺失。未观察到两个相邻靶位点之间的大量缺失。此外,还经常观察到表现出多个 GE 事件的再生体和芽的嵌合组成。通过比较两种分析方法,结果表明荧光 PCR 毛细管凝胶电泳是一种灵敏的高通量基因分型方法,可以同时准确预测多个位点的插入/缺失突变的大小和比例。特别是对于表现出高嵌合频率的物种,可以推荐将其作为有效选择同型组蛋白 GE 系的经济有效的方法。
与3种类型的铅酸电池兼容,范围从7到240 AH:•密封电池VRLA / GEL / GEL / AGM平板 / AGM螺旋•标准液体电池•启动 /停止电池(EFB / AGM)< / agm)< / div>
Zearalenone(ZEN)是一种由几种在谷物和农产品中发现的镰刀菌产生的非甾体雌激素霉菌毒素。Zen与农场动物和人类的霉菌毒性有关。ZEN的毒性作用众所周知,但是尚未确定碱性彗星测定法评估Zen诱导的Chang肝细胞中氧化DNA损伤的能力。这项研究的第一个目的是评估彗星测定法测定Zen Toxin诱导的细胞毒性和DNA大坝的程度,第二个目的是研究N-乙酰半胱氨酸酰胺(NACA)保护细胞以保护细胞免受Zen诱导的毒性的能力。在彗星测定中,通过量化尾部范围矩(TEM;任意单位)和尾部长度(TL;任意单位)来评估DNA损伤,这些损伤用作SCGE中DNA链断裂的指标。通过抑制细胞增殖并诱导氧化DNA损伤,介导Zen在变肝细胞中的细胞毒性作用。增加ZEN的集中度增加了DNA损伤的程度。用Zen毒素治疗后,DNA迁移的程度和尾部的细胞百分比显着增加(P <0.05)。与高浓度的Zen毒素(250 p m)的细胞治疗相比,用低浓度的Zen毒素(25 p m)处理Zen毒素(25 p m)的治疗诱导的DNA损伤水平相对较低。氧化DNA损伤似乎是Chang肝细胞中Zen诱导的毒性的关键决定因素。在暴露于任何浓度的ZEN之前先用NACA预先处理细胞时,观察到细胞溶解性的显着降低和氧化DNA损伤。我们的数据表明ZEN在Chang肝细胞中诱导DNA损伤,NACA的抗氧化活性可能有助于通过消除氧化应激减少Zen诱导的DNA损伤和细胞毒性。
Luiza Catarina Percilio Barros Graduate in Pharmacy Institution: Ceuma University Address: São Luís, Maranhão, Brazil E-mail: luizacatarina10@gmail.com Beneyton Gonçalo Carvalho Graduacy Institution: Ceuma University Address: São Luís, Maranhão, goncalobeneyton@gmail.com Flávia.com Ritchelle Coutinho Lucena Graduate in Pharmacy Institution: Ceuma University Address: São Luís, Maranhão, Brazil Email: flaviaritchelled@gmail.com Rafael Portela Serra and Serra Graduate in Production Engineering Institution: State University of Maranhão Address: São Luís, Maranhão, Brazil Email Borges Master's in Administration and Accounting机构:Fucape商学院地址:巴西MaranhãoS圣路利:luizf-borges@uol.com.brSaulojoséfigueiredoMendes Mendes Biotechnology Institation in Ceuma University of Ceuma University:SãoLuís:Maranhhão,Maranhhão,Brazil emailse net net: of Neto of doctor of doctor of doctorate Pharmaceutical Sciences Institution: University of Sao Paulo (USP) Address: São Luís, Maranhão, Brazil Email: lidiogneto@gmail.com Lully Gabrielly Silva Alves Master's in Biosciences Applied to Health Institution: Ceuma University Address: São Luís, Maranhão, Brazil E-mail: lully021481@ceuma.comLuiza Catarina Percilio Barros Graduate in Pharmacy Institution: Ceuma University Address: São Luís, Maranhão, Brazil E-mail: luizacatarina10@gmail.com Beneyton Gonçalo Carvalho Graduacy Institution: Ceuma University Address: São Luís, Maranhão, goncalobeneyton@gmail.com Flávia.com Ritchelle Coutinho Lucena Graduate in Pharmacy Institution: Ceuma University Address: São Luís, Maranhão, Brazil Email: flaviaritchelled@gmail.com Rafael Portela Serra and Serra Graduate in Production Engineering Institution: State University of Maranhão Address: São Luís, Maranhão, Brazil Email Borges Master's in Administration and Accounting机构:Fucape商学院地址:巴西MaranhãoS圣路利:luizf-borges@uol.com.brSaulojoséfigueiredoMendes Mendes Biotechnology Institation in Ceuma University of Ceuma University:SãoLuís:Maranhhão,Maranhhão,Brazil emailse net net: of Neto of doctor of doctor of doctorate Pharmaceutical Sciences Institution: University of Sao Paulo (USP) Address: São Luís, Maranhão, Brazil Email: lidiogneto@gmail.com Lully Gabrielly Silva Alves Master's in Biosciences Applied to Health Institution: Ceuma University Address: São Luís, Maranhão, Brazil E-mail: lully021481@ceuma.com
出版日期:2025/01/28摘要:十二烷基硫酸钠聚丙烯酰胺凝胶电泳(SDS-PAGE)是蛋白质分析中的基石技术,可根据其分子量提供精确的蛋白质分离和蛋白质的表征。本综述提供了SDS-PAGE的全面概述,作为Western印迹分析的关键一步,重点讨论了其在营养研究和食品质量评估中的应用。本文强调了SDS-PAGE在识别和量化饮食蛋白,评估蛋白质修饰以及评估各种食品基质中功能蛋白的完整性中的作用。特别强调实验参数的优化,例如凝胶组成,样品制备和电泳条件,以确保在复杂的蛋白质混合物中高分辨率和可重复性。此外,该评论探讨了SDS-PAGE协议中最新的进步,包括提高检测灵敏度和与下游分析的兼容性。通过解决常见的技术挑战并提出最佳实践,这项工作旨在在食品和营养科学的背景下提高SDS-PAGE的可靠性和准确性,为其在蛋白质表征,过敏原检测和质量控制中继续使用铺平道路。关键字:SDS-PAGE;蛋白质表征;分子量分离;食品和营养科学;电泳优化。如何引用:Omogbolahan Samson Idowu; David Oche Idoko; Samuel O. Ogundipe;伊曼纽尔·门萨(Emmanuel Mensah)。(2025)。在营养研究和食品质量评估中优化SDS-PAGE以进行准确的蛋白质表征。国际创新科学与研究技术杂志,第10(1)期,1008-1045。 https://doi.org/10.5281/Zenodo.14744563。