纳米电子学与 CRISPR 相遇 生物信号通常由两种分子元素相互结合时产生的相互作用产生。在 CRISPR 中,向导 RNA (gRNA) 与匹配的靶 DNA 序列结合,这一事件在 CRISPR-Cas9 基因组编辑过程中至关重要,其中 gRNA 引导 Cas9 蛋白到达需要修饰的 DNA 链上的精确位置。该过程启动序列特异性切割和潜在的 DNA 编辑,使其成为 CRISPR 技术精确度的根本贡献者。如果我们能够在电子平台上实时高灵敏度地监测这些结合事件,我们就可以使用“可编程”生物化学以高通量检测目标序列。石墨烯生物传感器以石墨烯场效应晶体管 (gFET) 为中心,使用液体电解质栅极来控制电流。它具有高可调性、灵敏度和生物相容性,使其在与生物系统交互方面很有价值。然而,这组属性也可能是一个挑战。溶液中的任何生物分子都可以与石墨烯表面相互作用,从而产生传感信号。因此,要实现特定响应,需要强大且定制的阻断化学或精确的试剂控制。为了利用 gFET 监测 CRISPR 的结合事件以检测 DNA 靶序列,我们召集了一支由背景各异、拥有统一团队的研究生和博士后研究人员组成
摘要 - 多种阵列广泛用于神经记录,无论是在体内还是在体内培养的神经元中。在大多数情况下,记录位点是被动电极连接到外部读出电路的电极,电线的数量至少等于记录位点的数量。我们提出了一种使用石墨烯有源电极打破常规N线n-电极阵列结构的方法,该电极允许使用频率分割多路复用(FDM)在多个活动电极之间在记录位点进行信号上流转换以及每个接口电线的共享。提出的工作包括使用石墨烯FET电极,自定义集成电路(IC)Ana-log前端(AFE)和数字解调的频率调制和读取体系结构的设计和实施。AFE在0.18 µm CMOS中制造;提供电气表征和多通道FDM结果,包括基于GFET的信号调制和IC/DSP解调。长期,这种方法可以同时实现高信号计数,高度分辨率和高时间精度,以推断神经元之间的功能相互作用,同时显着降低了访问线。
近年来,电子技术的突破使金属氧化物半导体场效应晶体管 (MOSFET) 的物理特性不断提升,尺寸越来越小,质量和性能也越来越高。因此,生长场效应晶体管 (GFET) 因其优异的材料特性而被推崇为有价值的候选者之一。14 nm 水平双栅极双层石墨烯场效应晶体管 (FET) 采用高 k 和金属栅极,分别由二氧化铪 (HfO 2 ) 和硅化钨 (WSi x ) 组成。Silvaco ATHENA 和 ATLAS 技术计算机辅助设计 (TCAD) 工具用于模拟设计和电气性能,而 Taguchi L9 正交阵列 (OA) 用于优化电气性能。阈值电压 (V TH ) 调整注入剂量、V TH 调整注入能量、源极/漏极 (S/D) 注入剂量和 S/D 注入能量均已作为工艺参数进行了研究,而 V TH 调整倾斜角和 S/D 注入倾斜角已作为噪声因素进行了研究。与优化前的初始结果相比,I OFF 值为 29.579 nA/µm,表明有显著改善。优化技术的结果显示器件性能优异,I OFF 为 28.564 nA/µm,更接近国际半导体技术路线图 (ITRS) 2013 年目标。
在过去十年中,石墨烯因其独特的电气特性(如高电子迁移率和高饱和速度 [1])而备受关注。遗憾的是,由于没有带隙,石墨烯不适合数字电路应用。在模拟 RF 电路中,传统的 MOSFET 结构(如石墨烯场效应晶体管 (GFET))能够达到约 400 GHz 的截止频率 (f T ) [2],但输出特性的非饱和行为 [3] 导致重要 RF 性能指标的下降,因为固有电压增益 A V = g m / g ds 。出于这个原因,最近提出了新的基于石墨烯的晶体管概念,如石墨烯基晶体管 (GBT, [4]),利用通过薄电介质的量子隧穿,如热电子晶体管 (HET, [5])。GBT 由垂直结构组成(图1 中的插图),其中石墨烯片用作控制电极,即基极 (B),位于图1 中的 x = 0 处。基极通过发射极-基极和基极-集电极绝缘体(分别为 EBI 和 BCI)与金属或半导体发射极 (E) 和金属集电极 (C) 隔开 [4]。在正常运行中(即正基极-发射极偏压,V BE > 0 和正集电极-基极偏压,V CB > 0),电子隧穿 EBI,垂直于石墨烯片 (GR) 穿过基极,然后沿着图1 中的 x 方向漂移穿过 BCI 的导带 (CB)。尽管其单原子厚度,