生成流动网络(GFLOWNETS)最近出现了一类生成模型,是通过从非均衡奖励分布中学习来生成多样化和高质量分子结构的合适框架。以前朝这个方向的工作通常通过使用预定义的分子碎片作为构建块来限制探索,从而限制了可以访问的化学空间。在这项工作中,我们引入了原子Gflownets(A-GFNS),这是一种基本生成模型,利用单个原子作为基础,以更全面地探索类似药物的化学空间。我们使用离线药物样分子数据集提出了一种无监督的预训练方法,该方法在廉价但信息丰富的分子描述符上(例如药物类似性,拓扑极性表面积和合成可及性得分)对A-GFN进行了评论。这些特性是代理奖励,将A-GFN引导到具有理想的药理特性的化学空间区域。我们通过实施目标的微调过程来进一步进一步,该过程适应A-GFN以优化特定目标属性。在这项工作中,我们在锌15离线数据集上预认识了A-GFN,并采用了强大的评估指标来显示与药物设计中其他相关基线方法相比,我们的方法的有效性。
距离比替代培训目标。(右)重新审视的FL-GFLOWNET的有效性并不显着取决于设定生成任务中所选的中间奖励功能。。。。17图4 - 在不同训练阶段,x〜p⊺(x;θ)的logπu(x)分布的kDE拟合;随着培训的进行,线的不透明度会增加。Rev.fl-gflownet和fl-gflownet变得越来越明显,因为我们努力生成更大的集合。(Pan等,2023)在将FL-GFLOWNET与标准Gflownets进行比较时观察到了类似的趋势。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17图5 - 训练gflownet对t = 2 - 3(sa-gfn)的exp n 1 tlogπu(x)o的样本进行了训练,从而相对
使用XED数据集,该数据集并不能部分地进行采样到Boltzmann分布。最近的几部作品,例如Boltzmann Generator,正在解决这个问题,10 - 13,但它们尚未证明具有足够的通用性(有关更多详细信息,请参见第2节)。在本文中,我们使用生成OW网络(Gflownets)来对Boltz-Mann分布的分子平衡构象进行采样。我们专注于分子的扭转角度,因为它们包含了限制空间的大部分差异,而键长和角度可以通过快速基于规则的方法效率生成。最近在连续的Gflownets 14上的一项工作提出了概念证明,以证明Gflownet从二维圆环上的分布中的样品中的样本能力。在这里,我们将这项工作扩展到任意数量的扭转角度的更现实的设置。此外,我们使用多种能量估计方法训练gflownets的不同delity。我们在实验上证明了所提出的方法可以从玻尔兹曼分布中采样分子构象,从而为多种扭转角度2-12种不同的药物样分子产生多样化的低能构象。
传感器阵列的效率随着更多的元素而改善,但增加的元素数量会导致更高的综合需求,成本和功耗。稀疏的Ar-rays仅利用可用元素的子集,提供了一种具有成本效益的解决方案。每个子集对数组的性能属性都有不同的影响。本文基于深层生成建模提供了一种无监督的学习方法,用于选择传感器。选择过程被视为确定性的马尔可夫决策过程,其中传感器子阵列作为终端状态出现。使用生成流网(GFLOWNET)范式用于学习基于当前状态的动作的分布。从上述分布中进行采样可确保达到末端状态的累积概率与相应子集的传感性能成正比。AP-PRACH用于发射光束形成,其中子集的表现与其相应的Beampattern和所需的束图案之间的误差成反比。该方法可以通过在一小部分可能的子集(小于0。0001%可能的子集)。索引术语 - 传感器选择,gflownets,深度学习,深层生成建模
摘要 — 集成复杂机器推理技术的基于意图的网络将成为未来无线 6G 系统的基石。基于意图的通信要求网络考虑数据传输的语义(含义)和有效性(在最终用户处)。如果 6G 系统要以更少的比特可靠地通信,同时为异构用户提供连接,这一点至关重要。本文与缺乏数据可解释性的最先进技术相反,提出了神经符号人工智能 (NeSy AI) 框架作为学习观察到的数据背后的因果结构的支柱。特别是,生成流网络 (GFlowNet) 的新兴概念首次在无线系统中用于学习生成数据的概率结构。此外,为了实现更高的语义可靠性,严格制定了一个用于学习最佳编码和解码函数的新型优化问题。开发了新的分析公式来定义语义消息传输的关键指标,包括语义失真、语义相似性和语义可靠性。这些语义度量函数依赖于知识库中语义内容的定义,而这种信息度量反映了节点的推理能力。仿真结果验证了高效通信的能力(使用更少的比特但具有相同的语义),并且与不利用推理能力的传统系统相比,性能明显更好。I. 引言未来的无线系统(例如 6G)如果要集成时间关键型自主系统应用,则必须在传输内容方面更加谨慎。正如香农 (Shannon) [1] 所指出的,传统无线系统注重可靠地发送物理比特,而不注重语义和有效性层。与传输全部数据相比,只发送对接收方有用的信息自然在延迟、带宽利用率和能量方面更有效率(不会影响可靠性)[2]。这是所谓基于意图的语义通信 (SC) 系统 [3] 的核心前提。基于意图的网络是一种自主系统,它定义了它们期望从网络获得的行为,例如“改善网络质量”,然后系统会自动将其转换为实时网络操作。整合语义和有效性方面以创建基于意图的无线网络需要重大的范式转变 [2]–[4]。它特别要求传输和接收节点不再只是盲目设备(来回传输数据),而是成为能够理解和推理数据及其生成方式的类脑设备。一种有前途的方法是将知识表示和推理工具与机器学习相结合。一旦智能嵌入到发送器和接收器中,通信设备就可以感知(数据采集)、预处理并高效通信,而不会产生不必要的网络瓶颈(通过发送大量不必要的数据)。尽管