上述外壳尺寸为典型尺寸。具体尺寸取决于订单数量。 9. ! 注意 9-1.浪涌电流 施加到产品上的浪涌电流(脉冲电流或冲击电流)超过规定的额定电流可能会导致严重故障,例如开路、因温度过高而烧毁。如果施加浪涌电流,请提前联系我们。 9-2. 应用限制 在将我们的产品用于下列需要特别高可靠性的用途之前,请与我们联系,以防止可能直接对第三方的生命、身体或财产造成损害的缺陷。 (1)飞机设备 (2)航空航天设备 (3)海底设备 (4)发电厂控制设备 (5)医疗设备 (6)防灾/防盗设备 (7)交通信号设备 (8)运输设备(汽车、火车、轮船等) (9)数据处理设备 (10)与上述用途具有相似复杂性和/或可靠性要求的用途 10. 注意事项 本产品设计为焊接安装。如需使用导电粘合剂等其他安装方法,请提前咨询我们。 10-1. 焊盘图案设计 标准焊盘尺寸(流动和回流焊接) 焊接 a b c
摘要 — 本文介绍了一种体积小、功耗低的毫米波相控阵接收机前端。本振 (LO) 和射频 (RF) 相移方案相结合,用于降低功耗和 RF 路径损耗。此外,在有源电路的实现中,采用了体隔离技术,以最少的级数实现更高的功率增益。该技术还用于 RF 路径移相器开关以减轻损耗。为了验证所提出的架构,采用 65 nm 体 CMOS 工艺制造了一个单元件 56 至 66 GHz 相控阵接收机前端。根据测量结果,接收机实现了 ∼ 14.85 dB 的功率增益和 5.7 dB 的最小噪声系数 (NF)。测得的平均 RMS 相位和增益误差分别为 ∼ 3.5 ◦ 和 ∼ 0.45 dB。接收器链的输入 1dB 压缩点 (P − 1dB ) 约为 − 19 dBm。完整的接收器(包括有源平衡-不平衡转换器和所需缓冲器(不包括 LO))在 1 V 电源下消耗约 50 mW 功率,不包括焊盘,占用硅片面积为 0.93 mm 2 。
多通道电生理传感器和刺激器,尤其是用于研究神经系统的刺激器,最常见的是基于单片微电极阵列。这种体系结构限制了单个电极放置的空间灵活性,从而构成了缩放到大量节点的约束,尤其是在非连续位置的范围内。我们描述了亚毫米尺寸电子微芯片的设计和制造,这些电子微芯片(“神经元”)自主执行神经感测或微刺激,重点是它们的无线网络和动力。一个〜1 GHz电磁的经皮连接到外部电信枢纽可以在单个神经趋势上进行双向通信和控制。该链接在定制的时分部多访问(TDMA)协议上运行,旨在扩展多达1000个神经元。该系统在小动物(大鼠)模型中被证明为具有解剖学限制的小动物(大鼠)模型的皮质植入物,将植入物限制为48个神经元。我们建议可以将神经重的方法推广,以克服无线传感器和执行器作为可植入的微型系统的许多可伸缩性问题。
摘要 — 我们介绍了一种 SOI 波导耦合锗光电二极管,它在 2 V 反向偏压下具有非常高的 OE -3 dB 带宽 ≥ 110 GHz。这种性能是通过一种新颖的结构实现的,即将锗夹在两个原位掺杂的硅区域之间。这种制造方法可以避免将离子注入锗,这无疑有利于带宽,因为少数载流子扩散效应受到强烈抑制。在 1550 nm (-2 V) 时实现了 >0.6 A/W 的响应度,而该器件的暗电流约为 300 nA (-2 V)。据我们所知,这是最先进的锗光电探测器,具有带宽、最先进的响应度以及中等暗电流。我们证明,这种新型光电二极管可以高产量制造。
摘要 — 本文介绍了一种新型高效可重构双频输出匹配网络设计方法。所实现的输出匹配网络在 2.4 GHz 和 5.5 GHz 下分别实现了 71.6% 和 75% 的无源效率。基于所提出的输出匹配网络,采用 40 纳米 CMOS 技术设计和制造了支持 2.4/5 GHz 双频操作的发射器和独立功率放大器 (PA),用于新兴的无线局域网 (WLAN) 802.11ax 应用。在 2.4 GHz 和 5 GHz WLAN 频段,PA 实现了 23 和 21.9-22.4 dBm 的 P sat ,功率附加效率 (PAE) 分别为 27% 和 24.2%-28.2%。在 2.442 GHz 时,发射器可为 40 MHz、1024 正交幅度调制 (QAM) 802.11ax 信号提供 8.1 dBm 平均输出功率,同时满足误差矢量幅度 (EVM) 低于 -35 dB 的标准规范。在 5 GHz 工作模式下,发射器可实现 6.72-6.95 dBm 的平均输出功率,80 MHz、1024 QAM 802.11ax 信号的 EVM 为 -35 dB。PA 和发射器前端是文献中首次发布的双频 WLAN 802.11ax 应用设计。
摘要 — 本文报道了一种三通道、非连续、流形多路复用器,工作频率为 220 至 330 GHz,工作带宽为 40%。该结构采用一组脊状基片集成波导 (SIW) 进行设计和实现。与传统 SIW 设计相比,脊状 SIW 提高了阻带带宽,并将整体结构尺寸缩小了 35%。三工器采用英特尔开发的有机封装基板技术,具有四层厚铜金属层和连续沟槽通孔代替标准通孔围栏,可显著降低脊状 SIW 波导的欧姆损耗。在三工器结构的开发中采用了电磁电路建模和协同设计技术。使用带状毫米波晶圆探测测量制造的三工器,通带中的插入损耗为 3 ∼ 7 dB,每个通道滤波器的平均回波损耗优于 10 dB。测得的三个通道的阻带衰减均优于 27 dB。
摘要 — 本文介绍了一种宽调谐范围双模毫米波 (mm-wave) 压控振荡器 (VCO),该振荡器采用了基于高品质因数 (Q) 变压器的可变电感器。通过构建高 Q 固定电容器变压器负载与无损开关结构串联,提出了一种具有两个不同值的高 Q 开关电感器,该无损开关结构不会像通过改变电容器上的信号模式那样给 LC 谐振回路增加任何损耗。通过为每种模式选择合适的中心频率和足够的频率重叠,可以设计宽频率调谐范围 (FTR) 毫米波 VCO。它提供了几乎两倍的调谐范围,同时保持相位噪声 (PN) 与使用两个独立电感器设计的双模 VCO 几乎相同。该 VCO 采用 65 nm CMOS 工艺制造,在 64.88 至 81.6 GHz 范围内测得的 FTR 为 22.8%。测量的 10 MHz 偏移处的峰值 PN 为 -114.63 dBc/Hz,最佳 FOM 和 FOM T 的最大和最小对应值分别为 -173.9 至 -181.84 dB 和 -181.07 至 -189 dB。VCO 核心在 1 V 电源下消耗 10.2 mA 电流,占用面积为 0.146 × 0.205 mm 2 。
2.2 单端 LNA 设计(共源共栅电感源极衰减) 图 1 显示了一个单端 LNA,该电路结构利用连接到源极处的晶体管 M 1 的电感 (LS )(电感源极衰减)[4]。这种结构的优点是设计人员可以通过选择适当的电感来灵活地控制输入阻抗实部的值。此外,为了减少调谐输出和调谐输入之间的相互作用,使用了级联晶体管 M 2 。偏置电路由形成电流镜的晶体管 M 1 和 M 3 实现。选择 M 3 以获得偏置电路的最小功率开销。使用电感 L d 的原因是为了与输出负载产生谐振以获得最大的输出功率传输。此外,通过设计更宽的 W 2 来权衡共源增益和增加第 2 个晶体管 (M 2 ) 的寄生电容。此外,晶体管 M 2 有助于降低米勒效应 (C gd1 ) 以及 S 21 [4]。等效电流
摘要:本文提出了一种77 GHz串馈贴片阵列天线的设计方法。该研究基于传统遗传算法,探索由相同微带贴片组成的不同阵列拓扑来优化设计。主要的优化目标是降低最大旁瓣电平(SLL)。采用该方法对一种用于汽车雷达的77 GHz串馈贴片阵列天线进行了仿真、加工和测量。天线长度限制不大于3 cm,阵列仅有单个紧凑串联,辐射贴片宽度约为1.54 mm。在用于优化的遗传算法中,将最大旁瓣电平设置为小于或等于-14 dB。测量结果表明,在77 GHz处,所提出的天线的增益约为15.6 dBi,E平面半功率波束宽度约为±3.8 ◦,最大旁瓣电平约为-14.8 dB,H平面半功率波束宽度约为±30 ◦。电磁仿真与测量结果表明,采用所提方法设计的77 GHz天线比本文相同长度的传统天线旁瓣抑制效果提高4 dB以上。
摘要 — 本文介绍了一种毫米波多模式雷达发射机 IC 的架构,该架构支持三种主要雷达波形:1) 连续波 (CW/FMCW);2) 脉冲;3) 相位调制连续波 (PMCW),全部来自单个前端。该 IC 采用 45 纳米 CMOS 绝缘硅片 (SOI) 工艺实现,可在 60 GHz 频段运行,集成了宽带三倍频器、两级前置放大器、两个功率混频器和混合信号基带波形生成电路。通过配置功率混频器和相关波形基带电路,可实现多种模式下的发射机雷达运行。这种方法的一个重要优势是,总信号带宽(雷达的一个关键性能指标)仅受脉冲生成中 RF 输出节点的限制。还提出了一种基于电流复用拓扑的新型宽带三倍频器设计技术,用于 LO 生成,输出分数带宽 > 59%。 CW 模式下完整 TX IC 的晶圆上测量结果显示,54 至 67 GHz 的平均输出功率为 12.8 dBm,峰值功率为 14.7 dBm,谐波抑制比 > 27 dB。脉冲模式下的测量显示可编程脉冲宽度为 20 至 140 ps,相当于 > 40 GHz 的雷达信号带宽。本例还演示了 PMCW 模式操作,使用 10 Gb/s PRBS 调制雷达信号。该 IC 功耗为 0.51 W,占用 2.3 × 0.85 mm2 的芯片面积(不包括焊盘)。