摘要:深度学习(DL)已成为现代人工智能(AI)的核心组成部分,通过促进复杂系统的分析,从生物学的蛋白质折叠到化学和物理学中的粒子相互作用,通过促进了各种领域的显着进步。但是,深度学习领域正在不断发展,并且在架构和应用中都有最新的创新。因此,本文对最近的DL进展进行了全面的综述,涵盖了卷积神经网络(CNNS)(CNN)和经常性神经网络(RNNS)等基础模型的演变和应用,以及最近的体系结构,例如变形金刚,诸如变形金刚,生成性对抗性网络(GANS),CAPSULE Networks,Capsule Networks和Graph Neural网络和图形神经网络(GNNS)(gnns)(GNNS)(GNNS)(GNNS)(GNNS)(GNNS)。此外,本文讨论了新颖的培训技术,包括自我监督的学习,联合学习和深入的强化学习,这进一步增强了深度学习模型的能力。通过综合最新的发展并确定当前的挑战,本文提供了有关DL研究的最新状态和未来方向的见解,为研究人员和行业专家提供了宝贵的指导。
分子表示学习(MRL)长期以来在药物发现和材料科学领域至关重要,并且由于自然语言处理(NLP)和图形神经网络(GNN)的发展,它取得了重大进展。nlp将分子视为一维顺序令牌,而GNN则将它们视为二维拓扑图。基于通过不同的消息传递算法,GNN在检测化学环境和预测分子特性方面具有各种性能。在此,我们提出了定向的图形注意力网络(D-GAT):具有定向键的表达性GNN。我们策略成功的关键是按照指示图处理分子图,并通过缩放的点 - 产物注意机制来更新键状态和原子状态。这使模型可以更好地捕获分子图的子结构,即官能团。与其他GNN或消息传递神经网络(MPNN)相比,D-Gats的表现优于15个重要分子属性预测基准中的13个。
摘要 — 众所周知,图神经网络 (GNN) 可以有效地对各种领域的网络数据进行建模。然而,在脑网络分析中,GNN 是否能胜过传统的浅层图分类模型(例如图核)仍不清楚。为此,我们分析了建模脑网络的不同方法,包括基于图核的 SVM、基本 GNN 和核化 GNN。这些模型旨在帮助分析疾病和精神障碍,如躁郁症、人类免疫缺陷病毒 (HIV)、创伤后应激障碍 (PTSD) 和抑郁症。具体来说,我们使用三种方法进行实验:核化支持向量机 (SVM)、消息传递图神经网络 (MPGNN) 和核图神经网络 (KerGNN)。我们得出结论:1) 深度模型 (GNN) 通常优于浅层模型 (SVM);2) 考虑特定图形主题的模型似乎并没有显着提高性能。我们还确定了其他图形核和 GNN 框架,这些框架有望推动大脑网络分析的进一步研究。索引词 — 大脑网络、GNN、图形学习、图形核、神经影像数据、SVM
摘要 — 图神经网络 (GNN) 近年来因其处理图数据的能力而引起了广泛的研究关注,并已广泛应用于实际应用中。随着社会越来越关注数据隐私保护的需求,GNN 面临着适应这一新常态的需求。此外,由于联邦学习 (FL) 中的客户端可能存在关系,因此需要更强大的工具来利用这些隐含信息来提高性能。这导致了联邦 GNN (FedGNN) 这一新兴研究领域的快速发展。这个有前途的跨学科领域对于感兴趣的研究人员来说极具挑战性。缺乏对这个主题的深入调查进一步加剧了进入的难度。在本文中,我们通过对这一新兴领域进行全面调查来弥补这一空白。我们提出了 FedGNN 文献的二维分类法:1) 主要分类法通过分析 GNN 如何增强 FL 训练以及 FL 如何协助 GNN 训练,为 GNN 和 FL 的集成提供了清晰的视角;2) 辅助分类法提供了 FedGNN 如何处理 FL 客户端之间的异质性的观点。通过讨论现有作品的关键思想、挑战和局限性,我们展望了未来的研究方向,这些方向可以帮助构建更强大、更可解释、更高效、更公平、更具归纳性和更全面的 FedGNN。
与其他模态相比,基于脑电图的情绪识别可以直观地响应人脑中的情绪模式,因此成为脑机接口领域最受关注的任务之一。由于大脑区域内的依赖关系与情绪密切相关,开发用于基于脑电图的情绪识别的图神经网络(GNN)是一个重要的趋势。然而,情绪脑电图中的大脑区域依赖关系具有生理基础,这使得该领域的GNN有别于其他时间序列领域的GNN。此外,目前尚无关于基于脑电图的情绪识别中GNN构建的全面综述或指导。在调查中,我们的分类揭示了统一的图构建框架下现有方法的共性和差异。我们从框架中的三个阶段对方法进行分析和分类,为基于脑电图的情绪识别中GNN的构建提供明确的指导。此外,我们还讨论了几个开放的挑战和未来的方向,例如时间全连通图和图浓缩。
图神经网络 (GNN) 正在图结构数据的机器学习研究中兴起。GNN 在许多任务上都实现了最先进的性能,但在具有大量数据和严格延迟要求的实际应用中,它们面临着可扩展性的挑战。为了应对这些挑战,人们已经进行了许多关于如何加速 GNN 的研究。这些加速技术涉及 GNN 管道的各个方面,从智能训练和推理算法到高效的系统和定制硬件。随着 GNN 加速研究数量的快速增长,缺乏系统的处理来提供统一的观点并解决相关工作的复杂性。在这篇综述中,我们提供了 GNN 加速的分类法,回顾了现有的方法,并提出了未来的研究方向。我们对 GNN 加速的分类处理将现有的工作联系起来,并为该领域的进一步发展奠定了基础。
本文提出了一种使用图神经网络(GNN)的新方法来解决电网中的交流功率流问题。AC OPF对于在满足电网的操作限制的同时,对最小生成成本至关重要。传统求解器与可扩展性斗争,尤其是在具有续签能源的大型系统中。我们的方法将功率网格建模为图形,其中总线是节点,传输线是边缘。我们探索包括GCN,GAT,SageConv和GraphConv在内的不同GNN架构,以有效地预测AC功率流解决方案。我们在IEEE测试系统上进行的实验表明,GNN可以准确地预测功率流解决方案并扩展到较大的系统,从而在计算时间方面优于传统求解器。这项工作突出了GNNs对实时电网管理的潜力,并计划将模型应用于更大的网格系统。
科学环境:抗菌耐药性(AMR)的兴起和对新抗菌策略的需求代表了现代医学中的紧迫挑战[1,2]。由于抗药性病原体的快速出现,传统的抗生素(例如抗生素)越来越无效[3]。在这种情况下,可以克服这些抗性机制的新型抗菌材料的发展至关重要[4,5]。人工智能(AI),尤其是深度学习(DL)方法,例如图形神经网络(GNNS),提供了一种创新的方法来加速这些材料的设计和优化[6-9]。gnns能够预测分子相互作用,从而可以快速鉴定具有增强抗菌特性的有希望的化合物和材料。这个博士学位论文项目旨在利用DL,特异性的转导/电感图神经网络方法,以设计和优化抗微生物材料,从而使过程更快,更有效,更有针对性,从而开发了生物医学应用下一代材料的开发,以抗击微生物感染。
脑电图(EEG)被广泛用作一种非侵入性技术,用于诊断几种脑部疾病,包括阿尔茨海默氏病和癫痫病。直到最近,人类专家已经通过脑电图读数发现了疾病,这不仅可能是特定的,而且很难找到,而且还会遭受人为错误。尽管最近出现了用于解释脑电图的机器学习方法,但大多数方法无法捕获人脑不同区域中信号之间的基本任意非欧几里得关系。在这种情况下,图形神经网络(GNN)因其在不同类型的图形结构数据中有效分析复杂关系的能力而引起了人们的关注。这包括脑电图,一个用例相对尚未探索。在本文中,我们旨在通过提出一项研究的研究来弥合这一差距,该研究应用于基于脑电图的阿尔茨海默氏病的检测以及对两种不同类型的癫痫发作的歧视。为此,我们通过证明单个GNN体系结构在两种用例中都可以实现最新性能来证明GNN的价值。通过设计空间探索和解释性分析,我们开发了一种基于图形的变压器,该变压器在阿尔茨海默氏病的三元分类变体和癫痫用例的三元分类变体中,可实现超过89%和96%的交叉验证准确性,与专家学家绘制的直觉相匹配。我们还讨论了GNN对脑电图的实时操作的计算效率,概括性和潜力,将其定位为分类各种神经病理学的宝贵工具,并为研究和临床实践开辟了新的前景。