图形神经网络(GNN)已在不同领域(例如运输,生物形式,语言处理和计算机视觉)中获得了吸引力。但是,关于将GNN应用于供应链网络的研究很明显。供应链网络在结构上本质上是图形的,使其成为应用GNN方法论的主要候选者。这开辟了一个可能性的世界,即使是最能力的供应链问题,也可以进行优化,预测和解决。这种方法的重大挫折在于没有现实世界的基准数据集,可以利用GNN进行研究和解决供应链问题。为了解决这个问题,我们提出了一个实际的基准数据集用于时间任务,该数据集是从孟加拉国领先的一家FMCG公司获得的,重点是用于生产目的的供应链规划。数据集将时间数据作为节点功能,以启用销售预示,生产计划和识别工厂问题。通过利用此数据集,研究人员可以使用GNN来解决众多供应链问题,从而进步供应链分析和计划领域。来源:https://github.com/ciol-sust/supplygraph
摘要 — 多模态脑网络从结构和功能两个方面表征了不同脑区之间的复杂连接,为精神疾病分析提供了一种新方法。最近,图神经网络 (GNN) 已成为分析图结构数据的事实上的模型。然而,如何使用 GNN 从多模态的脑网络中提取有效表示仍然很少被探索。此外,由于脑网络不提供初始节点特征,如何设计信息节点属性并利用边缘权重让 GNN 学习仍未得到解决。为此,我们为多模态脑网络开发了一种新型多视图 GNN。具体来说,我们将每种模态视为脑网络的一个视图,并采用对比学习进行多模态融合。然后,我们提出了一个 GNN 模型,该模型利用消息传递方案,通过基于度统计和脑区连接传播消息。在两个现实世界疾病数据集(HIV 和双相情感障碍)上进行的大量实验证明了我们提出的方法相对于最先进基线的有效性。
摘要 — 本研究探讨了图神经网络 (GNN) 和超图在使用氟脱氧葡萄糖正电子发射断层扫描 (FDG-PET) 图像改善抑郁症诊断的潜力。我们使用核密度估计和动态时间规整从单个静态 FDG-PET 图像构建图形和超图表示。在本地精神病数据集上使用各种 GNN 分类器(包括图卷积网络 (GCN) 和图同构网络 (GIN))评估这些表示。我们的实验表明,与成对图相比,GNN(尤其是 GCN)在超图上的性能更优越。我们强调了基于超图的表示在捕捉与抑郁症相关的复杂模式方面的整体功效。此外,我们对超图表示的探索为提高诊断准确性提供了有希望的途径,特别是在捕捉复杂的大脑连接模式方面。这项研究为 GNN 有助于使用 FDG-PET 图像更好地诊断精神疾病提供了证据,为个性化治疗策略和跨不同临床环境的诊断进步提供了见解。索引词 — 抑郁症、FDG-PET、KDE、DTW、图、超图、图神经网络、GIN、GCN。
通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。 自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。 图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。通过使用计算机视觉,AI解释了复杂的医学成像,为我们对生理条件的理解增加了一层深度。自然语言理解(NLU)将这种能力扩展到文本数据,通过临床注释进行解析,并报告了提取相关健康信息的结果,将其无缝整合到更广泛的健康状况中。图形神经网络(GNNS)通过对不同的健康决定因素之间的复杂关系进行建模,从而提供了一个动态框架,从而反映了健康因素的现实世界相互联系,从而进一步丰富了该数据综合。
Shaochen Zhong, Duy Le, Zirui Liu, Zhimeng Jiang, Andrew Ye, Jiamu Zhang, Jiayi Yuan, Kaixiong Zhou, Kaixiong Zhou, Zhaozhuo Xu, Jing Ma, Shuai Xu, Vipin Chaudhary and Xia Hu, “GNNs Also Deserve Editing, and They Need It More Than Once”, Forty-first International Conference on Machine Learning (ICML), Vienna, Austria, July 21, 2024
摘要 — 使用结构或功能连接映射人脑的连接组已成为神经影像分析最普遍的范例之一。最近,受几何深度学习启发的图神经网络 (GNN) 因其对复杂网络数据建模的强大功能而引起了广泛关注。尽管它们在许多领域都表现出色,但尚未系统地研究如何设计有效的 GNN 进行脑网络分析。为了弥补这一差距,我们提出了 BrainGB,这是使用 GNN 进行脑网络分析的基准。BrainGB 通过 (1) 总结功能和结构神经影像模式的脑网络构建流程和 (2) 模块化 GNN 设计的实现来标准化该过程。我们对跨队列和模态的数据集进行了广泛的实验,并推荐了一套在脑网络上有效 GNN 设计的通用方法。为了支持基于 GNN 的脑网络分析的开放和可重复研究,我们在 https://braingb.us 上托管了 BrainGB 网站,其中包含模型、教程、示例以及开箱即用的 Python 包。我们希望这项工作能够提供有用的经验证据,并为未来在这个新颖且有前途的方向的研究提供见解。索引术语 — 脑网络分析、GNN、神经成像的几何深度学习、数据集、基准
现代神经成像技术使我们能够将人脑构建为脑网络或连接体。捕捉脑网络的结构信息和层次模式对于理解脑功能和疾病状态至关重要。最近,图神经网络(GNN)良好的网络表征学习能力促使人们提出了相关的脑网络分析方法。具体而言,这些方法应用特征聚合和全局池化将脑网络实例转换为编码脑结构感应的向量表征,用于下游脑网络分析任务。然而,现有的基于 GNN 的方法往往忽略不同受试者的脑网络可能需要各种聚合迭代,并使用固定层数的 GNN 来学习所有脑网络。因此,如何充分释放 GNN 的潜力来促进脑网络分析仍然并非易事。在我们的工作中,提出了一种新颖的脑网络表征框架 BN-GNN 来解决这一难题,该框架为每个脑网络寻找最佳的 GNN 架构。具体来说,BN-GNN 采用深度强化学习 (DRL) 自动预测给定脑网络所需的最佳特征传播次数(反映在 GNN 层数中)。此外,BN-GNN 在八项脑网络疾病分析任务中提高了传统 GNN 性能的上限。© 2022 由 Elsevier Ltd. 出版。
人的大脑是复杂的神经生物学系统的核心,其中神经元,电路和子系统在策划行为和认知方面进行了研究。神经科学的最新研究表明,大脑区域之间的相互作用是神经发育和疾病分析的关键驱动因素[1,2]。使用结构或功能连通性映射人脑的连接组已成为神经成像分析最普遍的范式之一。重新说,从地理深度学习中动机的图形神经网络(GNN)由于其建模复杂的网络数据建模而引起了广泛的兴趣。在文献中,功能和结构联系被广泛认为是用于大脑调查的有价值的信息资源[3]。但是,他们主要在特定的私人数据集上对其建议的模型进行实验。由于道德问题,通常无法公开使用的数据集,并且未披露成像预处理的详细信息,从而使其他研究人员无法重新调查实验。目前尚未进行有关如何设计有效GNN用于脑网络分析的系统研究。为了弥合这一差距,我们提出了BraingB,这是一种用于GNNS的大脑网络分析的基准,并于2023年在IEEE-TMI上发表[4]。1。我们在同类和模式的四个数据集上进行实验,并建议一组在大脑网络上进行有效GNN设计的食谱。基于这四个维度的不同组合作为基准,我们的贡献是四个方面:•建立了一个统一,模块化,可扩展和可重复的框架,用于使用GNN进行大脑网络分析,以实现可重复性。它旨在通过可访问的数据集,标准设置和基线来启用公平评估,以促进计算神经科学和其他相关社区中的协作环境。•我们总结了功能和结构性大脑网络的预处理和施工管道,以弥合神经影像学和ML社区之间的差距。•我们将基于GNN的大脑网络分析的感兴趣的设计空间分解为四个模块:(1)节点feapers,(b)消息通讯机制,(c)注意机制和(d)汇总策略。
图形神经网络(GNNS)学会通过汇总邻居的信息来表示节点。随着GNNS的深度增加,它们的接受场成倍增长,导致高度记忆成本。文献中提出的几件作品旨在解决通过抽样或使用历史嵌入来解决这一缺点。这些方法主要集中在同质图上的单标签节点分类的基准上,其中相邻的节点通常共享相同的标签。但是,这些方法中的大多数都依赖于可能不会在不同的图形或任务上概括的静态启发式方法。我们认为,采样方法应具有自适应,并适应每个图的复杂结构特性。为此,我们引入了葡萄,这是一种自适应抽样方法,该方法学会识别一组对于训练GNN至关重要的节点。葡萄通过优化下游任务目标来训练第二个GNN,以预测节点采样概率。我们评估涉及同质图和异地图的各种淋巴分类基准的葡萄。我们证明了葡萄在准确性和可伸缩性中的有效性,尤其是在多标签异质图中。此外,葡萄的使用数量级比基于历史嵌入的强基线要少。与其他采样方法不同,葡萄的精度也很高,即使样本量较小,因此可以扩展到大量图。我们的实施在线公开可用。1。
随着深度学习的有希望的进展,开发了许多方法来预测蛋白质功能。这些方法可以大致分为两类:基于序列和基于结构的方法。基于序列的方法利用了1D卷积神经网络(CNN)或变压器模型来生成蛋白质序列的特定表示[3,4]。后来,将蛋白质序列和同源性信息结合在一起的方法显示出显着改善[5,6]。蛋白质结构预测的最新发展使研究人员能够获得给定蛋白序列的可能的三维结构[7,8,9]。因此,许多基于结构的方法都使用图形神经网络(GNN)和通过消息范式范式从蛋白质结构信息中提取特征[10,11]。具体来说,每个残基在每一层的几何邻域接收信号,然后将图池层总结为蛋白质级表示,以进行分类。一种新开发的方法,即TAWFN,集成的CNN和GNN,利用蛋白质序列和结构信息来预测蛋白质功能[12]。