图形神经网络(GNNS)学会通过汇总邻居的信息来表示节点。随着GNNS的深度增加,它们的接受场成倍增长,导致高度记忆成本。文献中提出的几件作品旨在解决通过抽样或使用历史嵌入来解决这一缺点。这些方法主要集中在同质图上的单标签节点分类的基准上,其中相邻的节点通常共享相同的标签。但是,这些方法中的大多数都依赖于可能不会在不同的图形或任务上概括的静态启发式方法。我们认为,采样方法应具有自适应,并适应每个图的复杂结构特性。为此,我们引入了葡萄,这是一种自适应抽样方法,该方法学会识别一组对于训练GNN至关重要的节点。葡萄通过优化下游任务目标来训练第二个GNN,以预测节点采样概率。我们评估涉及同质图和异地图的各种淋巴分类基准的葡萄。我们证明了葡萄在准确性和可伸缩性中的有效性,尤其是在多标签异质图中。此外,葡萄的使用数量级比基于历史嵌入的强基线要少。与其他采样方法不同,葡萄的精度也很高,即使样本量较小,因此可以扩展到大量图。我们的实施在线公开可用。1。
主要关键词