Loading...
机构名称:
¥ 1.0

量子计算提供了一种有希望的途径来降低日益增长的机器学习模型复杂性,这是天气预报、财务预测或工程的大型语言模型和模拟模型所必需的。图神经网络是一类特殊的机器学习模型,因其能够很好地处理结构化数据而备受关注。我们研究如何增强现有的 GNN,并通过归纳偏差发现量子电路最适合用于编码节点特征。提出的量子特征嵌入 (QFE) 将原始输入特征转换为量子态,从而实现非线性和纠缠表示。特别是,QFE 在指数级更大的特征空间中提供规范化、非冗余的权重矩阵,并且所需的量子比特比完全量子图神经网络少得多。在标准图基准数据集上,我们展示了对于相同参数数量,QFE 的表现优于其经典对应物,并且能够匹配指数级更大的模型的性能。最后,我们研究了在具体用例激光切割上使用混合量子图神经网络相对于经典替代方案的潜在优势。我们发现所提出的模型具有提升这些商业应用的性能,因此在短期内有潜力。

图神经网络的量子特征嵌入

图神经网络的量子特征嵌入PDF文件第1页

图神经网络的量子特征嵌入PDF文件第2页

图神经网络的量子特征嵌入PDF文件第3页

图神经网络的量子特征嵌入PDF文件第4页

图神经网络的量子特征嵌入PDF文件第5页