摘要 — 图神经网络 (GNN) 近年来因其处理图数据的能力而引起了广泛的研究关注,并已广泛应用于实际应用中。随着社会越来越关注数据隐私保护的需求,GNN 面临着适应这一新常态的需求。此外,由于联邦学习 (FL) 中的客户端可能存在关系,因此需要更强大的工具来利用这些隐含信息来提高性能。这导致了联邦 GNN (FedGNN) 这一新兴研究领域的快速发展。这个有前途的跨学科领域对于感兴趣的研究人员来说极具挑战性。缺乏对这个主题的深入调查进一步加剧了进入的难度。在本文中,我们通过对这一新兴领域进行全面调查来弥补这一空白。我们提出了 FedGNN 文献的二维分类法:1) 主要分类法通过分析 GNN 如何增强 FL 训练以及 FL 如何协助 GNN 训练,为 GNN 和 FL 的集成提供了清晰的视角;2) 辅助分类法提供了 FedGNN 如何处理 FL 客户端之间的异质性的观点。通过讨论现有作品的关键思想、挑战和局限性,我们展望了未来的研究方向,这些方向可以帮助构建更强大、更可解释、更高效、更公平、更具归纳性和更全面的 FedGNN。
主要关键词