基于脑启发前向的图神经网络...
机构名称:
¥ 1.0

工业中的过程控制(Huang et al., 2023; Liu et al., 2023; Zhang R. et al., 2023)。受益于信号处理和深度学习(DL)的进步,BCI 的一个突出子集是脑电图 (EEG)(Gao and Mao, 2021; Zhao et al., 2022; Li H. et al., 2023)。EEG 技术主要用于识别和分类运动想象 (MI) 信号,这对中风患者等行动障碍者来说是一种重要的辅助手段。EEG 的高精度、实时响应和成本效益使其有别于其他神经成像技术,如脑磁图和功能性磁共振成像(Huang et al., 2021; Mirchi et al., 2022; Tong et al., 2023)。传统的 MI-EEG 分类算法采用空间解码技术,利用从头皮记录的多通道 EEG 数据来识别运动意图 (Xu et al., 2021)。为了对来自多通道 MI-EEG 的信号进行分类,已经提出了各种方法,有效地捕捉它们的时间、频谱和空间特征 (Tang et al., 2019; Wang and Cerf, 2022; Hamada et al., 2023; Li Y. et al., 2023)。鉴于 EEG 信号的节律性和非线性特性,已经提出了几种利用小波调制和模糊熵的特征提取技术。 Grosse(Grosse-Wentrup and Buss,2008)介绍了一种结合公共空间模式 (CSP) 进行空间滤波和降低维数的方法,并辅以滤波器组技术将空间细化信号划分为多个频率子带。同样,Malan 和 Sharma(2022)开发了一个基于双树复小波变换的滤波器组,将 EEG 信号分离为子带。将 EEG 信号分割成这些子带后,通过 CSP 从每个子带得出空间特征,随后采用监督学习框架进行细化。Fei 和 Chu(2022)提出了一种利用相空间和小波变换的多层孪生支持向量机。尽管这些方法具有潜力,但它们忽略了电极之间的拓扑关系,因此需要进一步优化以提高 MI 分类准确性。认识到神经科学对脑网络动力学和神经信号传播机制的日益重视,图卷积网络 (GCN) 已被引入用于解码 EEG 信号(Wang 等人,2021;Du G. 等人,2022;Gao 等人,2022)。然后 Kipf 和 Welling(2016)将图论和深度学习结合起来以捕捉节点之间的关系。巧合的是,Hinton(2022)提出的神经传递领域的一个突破性概念前向-前向 (FF) 机制正在引起人们的关注。该机制提供了一种有效的方法来处理神经网络中的序列数据,而无需存储神经活动或暂停以进行错误传播。我们的研究旨在将 FF 机制与 GCN 相结合,用于基于 EEG 的 BCI,从而在运动意象分类方面取得重大进展。在研究中,我们提出了一种创新的 F-FGCN 框架用于 MI 分类。我们研究的突出贡献如下:

基于脑启发前向的图神经网络...

基于脑启发前向的图神经网络...PDF文件第1页

基于脑启发前向的图神经网络...PDF文件第2页

基于脑启发前向的图神经网络...PDF文件第3页

基于脑启发前向的图神经网络...PDF文件第4页

基于脑启发前向的图神经网络...PDF文件第5页

相关文件推荐

分流环容错网络...
2001 年
¥3.0