MASA-TCN - DR-NTU
机构名称:
¥ 1.0

摘要 — 从脑电图 (EEG) 信号中进行情绪识别是生物医学研究的一个重要领域,其应用范围广泛,从精神障碍调节到人机交互。在本文中,我们讨论了 EEG 情绪识别的两个基本方面:情绪状态的连续回归和情绪的离散分类。虽然分类方法已经引起了广泛关注,但回归方法仍然相对未被充分探索。为了弥补这一差距,我们引入了 MASA-TCN,这是一种新颖的统一模型,它利用时间卷积网络 (TCN) 的空间学习能力进行 EEG 情绪回归和分类任务。关键创新在于引入了空间感知时间层,使 TCN 能够捕捉 EEG 电极之间的空间关系,从而增强其辨别细微情绪状态的能力。此外,我们设计了一个具有注意力融合的多锚块,使模型能够自适应地学习 EEG 信号中的动态时间依赖性。在两个公开数据集上的实验表明,MASA-TCN 在 EEG 情绪回归和分类任务中都取得了比最先进方法更高的结果。

MASA-TCN - DR-NTU

MASA-TCN - DR-NTUPDF文件第1页

MASA-TCN - DR-NTUPDF文件第2页

MASA-TCN - DR-NTUPDF文件第3页

MASA-TCN - DR-NTUPDF文件第4页

MASA-TCN - DR-NTUPDF文件第5页