摘要。我们为多项式环(RING-R1C)提出了一个均方根大小的证明系统,特别是对于形式的ℤ[𝑋]/(𝑋 + 1)的环。这些环被广泛用于基于晶格的结构中,这是许多现代现代Quantum cryp-tographic方案的基础。在这些环上为算术构建有效的证明系统受到两个关键障碍的挑战:(1)在𝑄和𝑁的实际流行选择下,环ℤ[𝑋 + + 1)不像野外,因此像Schwartz-Zippel Lemma这样的工具不能应用; (2)当𝑁很大时,这在基于晶格的密码系统的实现中很常见时,该环很大,导致证明尺寸次优。在本文中,我们解决了这两个障碍,可以更有效地证明算术比ℤ[𝑋]/(𝑋 + 1)时,当𝑄是一种“晶格友好的”模量时,包括支持快速计算或power-power-power-two moduli的模量。我们的主要工具是一种新颖的环开关技术。环开关的核心思想是将r1cs通过ℤ[𝑋]/(𝑋 + 1)转换为另一个r1cs实例,而galois环是磁场状且小的(与大小独立于𝑁)。作为(零知识)证明在密码学中有许多应用,我们希望多项式环算术的有效证明系统可以从晶格假设(例如聚合签名,群体签名,可验证的随机功能,或可证实的完全霍omororphicAppleption)中从晶格假设中产生更有效的高级基础构建。
摘要 — 量子置换垫或 QPP 最早由 Kuang 和 Bettenburg 于 2020 年提出 [15]。QPP 是一种由多个 n 量子比特量子置换门组成的通用量子算法。作为一种量子算法,QPP 既可以在量子计算系统中实现为对 n 量子比特状态进行操作以进行转换的量子电路,也可以在由 n 位置换矩阵垫表示的经典计算系统中实现。QPP 具有两个独特的特点:巨大的香农信息熵和置换矩阵之间的非交换性或广义不确定性原理。置换变换是输入信息空间和输出密文空间之间的双射映射。这意味着,由于不确定性关系,QPP 具有可重用的香农完全保密性。QPP 是希尔伯特空间上一次性垫或 OTP 的推广,而 OTP 是伽罗瓦域上 QPP 的简化。基于此,本文研究了一种 AES 变体,将 AES 的 ShiftRows 和 MixColumns 与 QPP 结合起来,形成一种量子安全轻量级密码体制,称为 AES-QPP。AES-QPP 将 SubBytes 和 AddRoundKey 与 16 个 8 位置换矩阵的相同 QPP 结合起来,本质上 SubBytes 是一个特殊的 8 位置换矩阵,AddRoundKey 是从 XOR 操作中选择的 16 个 8 位置换矩阵。通过随机选择 16 个带有密钥材料的置换矩阵,AES-QPP 可以容纳总共 26,944 位香农熵。它不仅提高了对差分和线性攻击的安全性,而且还将轮数大大减少到 5 轮。AES-QPP 可能是量子安全轻量级密码体制的良好候选者。
2024年算术统计中的nilpotent计数问题,AIM,帕萨迪纳,加利福尼亚州。美国2,墨西哥瓦哈卡州CasaMatemáticaoaxaca的数字理论。XVI算法数理论研讨会。 MIT,马萨诸塞州波士顿。 Mordell猜想100年后。 MIT,马萨诸塞州波士顿。 LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。XVI算法数理论研讨会。MIT,马萨诸塞州波士顿。 Mordell猜想100年后。 MIT,马萨诸塞州波士顿。 LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。MIT,马萨诸塞州波士顿。Mordell猜想100年后。MIT,马萨诸塞州波士顿。 LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。MIT,马萨诸塞州波士顿。LMFDB中的超几何动机。 MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。LMFDB中的超几何动机。MIT,马萨诸塞州波士顿。 shimura曲线在LMFDB中。 达特茅斯,新罕布什尔州汉诺威。 亚利桑那冬季学校:阿贝利安品种。 Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。MIT,马萨诸塞州波士顿。shimura曲线在LMFDB中。达特茅斯,新罕布什尔州汉诺威。亚利桑那冬季学校:阿贝利安品种。Tucson,AZ。 2023 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Tucson,AZ。2023 Palmetto编号理论系列XXXVII。UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。 icerm,普罗维登斯,RI。 MRC:堆栈的显式计算。 布法罗,纽约。 Palmetto编号理论系列XXXVII。 UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。UGA,乔治亚州雅典。 Lucant:LMFDB,计算和数理论。icerm,普罗维登斯,RI。MRC:堆栈的显式计算。布法罗,纽约。Palmetto编号理论系列XXXVII。UGA,乔治亚州雅典。算术统计会议。 Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。UGA,乔治亚州雅典。算术统计会议。Cirm,Marseille,法国。 算术统计中的春季学校。 Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Cirm,Marseille,法国。算术统计中的春季学校。Cirm,Marseille,法国。 亚利桑那冬季学校:不太可能的交叉点。 Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Cirm,Marseille,法国。亚利桑那冬季学校:不太可能的交叉点。Tucson,AZ。 入门研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 连接研讨会:Diophantine几何形状。 MSRI,伯克利,加利福尼亚州。 2022 Palmetto编号理论系列XXXV。 o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。Tucson,AZ。入门研讨会:Diophantine几何形状。MSRI,伯克利,加利福尼亚州。连接研讨会:Diophantine几何形状。MSRI,伯克利,加利福尼亚州。2022 Palmetto编号理论系列XXXV。o的SC,哥伦比亚,SC。 agnes:高维模量的暑期学校。 布朗,普罗维登斯,RI。 PCMI:数字理论通过计算告知。 犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。o的SC,哥伦比亚,SC。agnes:高维模量的暑期学校。布朗,普罗维登斯,RI。PCMI:数字理论通过计算告知。犹他州帕克市。 ctnt:康涅狄格州暑期学校的数字理论。 uConn,Storrs,Ct。 插科打:佐治亚州代数几何研讨会。 Tucson,AZ。犹他州帕克市。ctnt:康涅狄格州暑期学校的数字理论。uConn,Storrs,Ct。插科打:佐治亚州代数几何研讨会。Tucson,AZ。Tucson,AZ。埃默里,佐治亚州亚特兰大。亚利桑那州冬季学校:超越GL 2的自动形式。2021 PCMI:逆Galois问题。在线。
印度隐藏在加密图像(RDHEI)中的摘要可逆数据是一种将秘密信息嵌入加密图像中的技术。它允许提取秘密信息和无损解密以及原始图像的重建。本文提出了一种基于Shamir的秘密共享技术和多项目构建技术的RDHEI技术。我们的方法是让图像所有者通过对像素并构造多项式来隐藏多项式的系数中的像素值。然后,我们通过Shamir的秘密共享技术将秘密钥匙替换为多项式。它使Galois字段计算能够生成共享像素。最后,我们将共享像素分为8位,然后将它们分配给共享图像的像素。因此,嵌入式空间被腾空,生成的共享图像隐藏在秘密消息中。实验结果表明,我们的方法具有多个隐藏机制,并且每个共享图像具有固定的嵌入率,随着更多图像的共享,该机制不会降低。此外,与先前的方法相比,嵌入率得到提高。简介多媒体安全技术用于防止未经授权的用户复制,共享和修改媒体内容。为了防止此问题,加密和信息隐藏通常用于保护媒体内容。就信息隐藏技术而言,传统信息隐藏技术将破坏封面图像的内容。因此,这些图像是否可以完全恢复非常重要。但是,在某些例外情况下,例如军事,医疗和法律文档图像,图像的轻微失真是完全无法接受的。可逆数据隐藏方案(RDH)可以与无损的要求相对应。RDH方法应用了更改上下文的方法,以在封面媒体中隐藏秘密数据。数据提取后,不断变化的上下文将被充分回收到封面媒体。另一方面,RDHEI(隐藏在加密图像中的可逆数据)技术可以将加密技术与RDH技术相结合,RDH技术不仅可以在图像中隐藏秘密信息,而且还可以加密图像以保护图像内容。Visual密码学是一种加密技术,允许视觉信息(图片,文本等)要加密的方式使解密成为不需要计算机的机械操作。
摘要凸理论是数学的一个完善的(尽管不是主流)分支,在各种环境中的应用包括“连续”和离散的结构[14]。这种多功能性部分是因为在集合上的凸度定义类似于拓扑结构。特别是,集合x上的凸度是其子集的任何集合C,满足三个简单的公理:∅,x∈C; C在任意交集下关闭; C在嵌套工会下关闭。C的元素称为凸集。在集合x上建立凸度的一种方法是从间隔运算符开始,这是从x×x到x(此类映射也称为二进制超操作)的映射I(x,y∈I(x,x,y)和i(x,x,y)= i(y,y)= i(y,x)= i(y,x)= i(y,x)= i(y,x)= i(y,x)。我们将i(x,y)解释为“在”给定x,y∈X的所有元素的集合。随后,我自然会通过声明A集a⊂x凸面来诱导x上的凸度,但如果i(x,y)⊂a a for All x,y∈A。The most well-known examples of convexities arising this way are convexities induced by metric intervals [ x, y ] d = { z ∈ X : d ( x, z ) + d ( z, y ) = d ( x, y ) } in metric spaces and linear intervals [ x, y ] l = { αx + (1 − α ) y : α ∈ [0 , 1] } in normed spaces.实际上,固定集X上的所有凸与X上的所有间隔运算符之间都有GALOIS连接(请参阅命题2.2.1)。图理论,由于顶点对之间的多种路径,自然定义了几个间隔操作器(诱导相应的凸度)。本文结构如下。最短的路径,诱导路径,局部最短路径,无弦路径和其他路径家族产生的间隔操作员如下。如果p是图G中的路径集合,其中g中的每对顶点均与p的至少一个元素连接在一起,然后将i p(x,y)= {z∈V(g)放置在p上的某个路径上,从p连接x,y}。在本文中,我们关注由Interval Operator I P引起的全路径凸度,其中P是给定图中所有(简单)路径的集合。最初,[9]中考虑了这种特殊的凸度,并且[8]中建立了与该凸度有关的经典问题的算法方法。我们还指工作[3],其中相应的间隔运算符以抽象的方式表征。在第2节中,我们概述了所有在工作中将使用的所有基本定义和初步结果。特别是,第2.1节涵盖了图理论的基础,第2.2节介绍了凸空间,间隔运算符和图形中的全路径的所有必要背景。在第3节中,我们提出了我们的主要结果。首先,我们在第3.1节中给出了全路径凸集的新表征。也就是说,定理3.1.1提供的理论标准比[8]中的理论标准更多,该标准可以轻松地用于获取所有PATH凸集集的所有已知重要属性。此外,定理3.1.1允许我们获得块图(定理3.1.2)的新表征,并在第3.2节中计算All-Path covexity(定理3.2.1)的一般位置号。All-Path的标准