无细胞的蛋白质合成(CFP)系统随着基础研究,应用科学和产品开发的通用工具而变得越来越重要,并随着其应用而出现的新技术。使用CFP的合成生物学领域取得了巨大进展,以开发用于技术应用和治疗的新蛋白质。从可用的CFPS系统中,无小麦生殖细胞蛋白质合成(WG-CFP)与使用真核核糖体的最高产量合并,这使其成为合成复杂真核蛋白质(包括蛋白质复合物和膜蛋白)的绝佳方法。将翻译反应与其他细胞过程分开,CFP提供了一种灵活的手段,以适应蛋白质需求的翻译反应。对这种有效,易于使用的快速蛋白质表达系统的需求很大,它们在驱动生化和结构生物学研究方面最适合蛋白质需求。我们在这里总结了小麦细菌系统的一般工作流,该过程提供了文献中的例子,以及用于我们自己的结构生物学研究的应用。通过这篇综述,我们希望强调快速发展且通用性的CFPS系统的巨大潜力,从而使它们更广泛地用作常见工具,以重组准备特别具有挑战性的重组真核蛋白。
将 DLW 制备的微结构应用于功能设备中,需要具有不同电学、光学、机械和化学特性的各种材料。自适应性材料(即其特性可以在制造后进行定制)是人们所迫切需要的,而可降解性则是人们所最需要的自适应特性之一。[7–9] 然而,DLW 过程中产生的交联聚合物结构(尤其是使用商用光刻胶时)是永久性的。降解此类材料通常需要苛刻的条件,例如经典 (甲基) 丙烯酸网络中酯键的高温水解或激光烧蚀。[7,8] 光刻胶配方中加入了各种化学功能,使印刷结构在特定刺激下破裂,例如化学试剂、[10–12] 酶、[13] 温度或光。[14] 其中,光是首选触发器,可对降解过程进行空间和时间控制。为了将光降解性引入微结构,必须在光刻胶的化学结构中整合一个光不稳定部分。设计光可降解 DLW 光刻胶的一个关键挑战是选择合适的、在写入过程中稳定的光不稳定基团。某些光化学反应,例如香豆素、蒽和肉桂酸酯等化学实体的可逆光二聚化可能适合这些目的,因为它们的二聚化/交联可以在 300 至 400 nm 的紫外线下诱导,而环消除可以在较短波长的紫外线(≤ 260 nm)照射下发生。[15] 然而,这种高能量的 UVA/UVB 照射对于许多应用来说可能过于剧烈,特别是细胞支架。可能更合适的可见光响应光不稳定部分在紫外线下会迅速降解,因此无法在写入过程中存活,而写入过程大多采用这种紫外线波长。 [16] 到目前为止,我们团队只有一份关于从 DLW 中获得光降解网络的报告,其中书写和
我们提出了一个控制理论框架来研究嵌入在模拟环境中的生物驱动人工神经系统(Sussillo,2014)的稳定性和可控性。从高层的角度来看,这个框架模拟了脑-机-环境的相互作用。我们首先考虑建模一个神经系统在虚拟环境中执行行为任务的问题。用控制理论的语言来说,神经系统与环境过程形成一个闭环反馈控制器。在第二步中,我们模拟神经系统的退化(例如在传感器或执行器处)并添加一个二级控制器(假肢),目的是恢复行为功能。在此过程中,我们考虑了大脑模型中的不确定性、非线性、测量噪声以及可观察状态和可控神经元的有限可用性。神经系统,从单个神经元到大规模群体,都以复杂的动态为特征,建模和控制可能具有挑战性(Ritt and Ching,2015)。经典控制理论(Khalil,2002;Brunton 和 Kutz,2017;Astrom 和 Murray,2020)为设计控制律提供了强大的工具,并在神经技术领域得到广泛应用,例如机械臂或计算机光标的闭环脑机接口 (BMI) 控制(Shanechi 等人,2016)、癫痫发作缓解的模型预测控制(Chatterjee 等人,2020)以及大脑在认知状态之间转换的机制解释(Gu 等人,2015)。闭环控制的一个特别成功的应用是通过深部脑刺激治疗帕金森病。在那里,可以使用基于阈值、比例积分或自调节控制器将病理性 β 波段振荡活动抑制在所需的目标水平(Fleming 等人,2020a、b)。 Schiffi (2011) 建立了一种将控制理论与神经科学和生物医学联系起来的典型方法,其中时空皮质动态模型与卡尔曼滤波器相结合,以估计未观察的状态并跟踪未知或漂移的模型参数。神经形态社区中的团队最近通过实现生物学上合理的操作和学习状态估计和控制规则(Friedrich 等人,2021;Linares-Barranco 等人,2022)以及神经形态 BMI 电路(Donati 和 Indiveri,2023)为这项工作做出了贡献,这有望在低功耗运行时实现更好的生物相容性。在上述许多方法中反复出现的一些挑战是线性(可实现)或低维系统的假设、对底层动态的知识或所需目标状态的可用性(如帕金森病的 DBS)。本文针对这些局限性做出了两项主要贡献。首先,我们建议一致使用动力系统来模拟大脑、环境、和假肢。除了统一方法论之外,这种选择还可以灵活地对不同程度的真实模型进行实验。在这里,我们展示了循环神经网络 (RNN) 作为神经系统和假肢的简单、高度可扩展的构建块的使用。其次,我们逐步消除了线性、系统知识、完全可观测性和监督目标状态的假设,通过使用强化学习 (RL)(Sutton 和 Barto,2020 年)进行系统识别和合成假肢控制器。
德国不能忽视这一现象带来的影响。为维护其经济和技术竞争优势,它必须将其国内和国际能力与数字技术领域的政策目标结合起来。德国必须通过将其数字主权理论锚定在基于“自由选择”原则的六个相互关联的基础之上来做到这一点:支持自主创新的环境;促进思想和技术的公开竞争;制定明确的规则以建立民主的、以人为本的秩序;恢复欧洲和全球用户的信息自决权;限制碳排放并保证技术可持续性;对违反规则的人实施严厉的惩罚。在数字技术方面,德国不能选择“第三条道路”——即在美国和中国之间走等距路线。德国和欧盟应与其他志同道合的国家(首先是美国)合作,利用其市场规模、准入和创新工业基础的集体力量,将规则、价值观和互惠结合起来,作为民主技术治理秩序中相互加强的工具。与此同时,柏林必须在其创新工业基础中纳入稳定因素,以保护柏林和欧洲免受世界两大技术强国之间日益激烈的技术竞争所造成的脆弱性。
新冠病毒给人们的生活带来了巨大的负担,并引发了经济动荡。中国是第一个受到病毒影响的国家。中国采取的严格隔离措施可能有助于遏制病毒。然而,全国大部分地区的日常生活和工作都陷入了停滞。供应链被打乱,全球许多依赖中国及时供应中间产品的公司被迫缩减生产规模。中国人只购买即时必需品。例如,2 月份,汽车购买量非常少。这种保守的消费支出将打击在中国市场有重大利益的德国制造商。德国经济很可能在上半年感受到影响,尽管很难给出确切的数字(见图)。虽然疫情似乎在中国已经达到顶峰,但其他国家的感染人数正在上升。这也将导致欧洲产量大幅削减,许多消费者将大幅缩减一系列活动。总而言之,新冠病毒带来的经济影响可能导致经济增长下降超过1%,经济产出萎缩0.1%;如果不是因为工作日相对较多,对增长率的负面影响将更加明显,达到0.5%。
城市政治结构对前工业化时期的经济不平等有何影响?我记录了一组早期现代德国城市中更封闭的政治机构与更高的经济不平等相关。为了研究这种宏观关系背后的机制,我构建了一个独特的个人层面面板数据集,其中包含 1579 年至 1700 年间关于诺德林根城邦个人财富和政治职位的约 27,000 条观察结果。我采用了差异差异设置来表明政治精英在就任后大大致富。政治权力越大的人致富越多。这些从公职中获得的私人收益加剧了经济不平等。为了减轻对反向因果关系的担忧,我利用三十年战争(1618-1648 年)作为对精英寻租潜力的合理外生冲击。政治官员操纵这场危机来进一步致富,导致财富分配不均。这一结果与常见的历史叙述相矛盾,即城市政治精英是“具有公民意识的”公共利益守护者。
需要采用多组学方法来改善 ASCVD 管理 ASCVD(见词汇表)仍然是一项持续的全球健康挑战,是导致过早死亡和生活质量下降的重要原因。它源于可改变的(例如生活方式、吸烟、饮酒、未控制的高血压、高胆固醇血症、肥胖和 2 型糖尿病)和不可改变的(即遗传背景、年龄和性别)风险因素的复杂相互作用 [1]。当前管理 ASCVD 的模式很大程度上依赖于临床风险算法,例如欧洲的系统冠状动脉风险评估 2 (SCORE2) 系统 [2]。然而,风险评分主要依赖于有限的一组传统风险因素,可能会忽略代表性不足的亚群 [3-5](框 1)。这种背景凸显了对 ASCVD 管理更全面、更整体的方法的必要性。为实现这一目标,需要开展多模式研究,首先阐明 ASCVD 之外的复杂病理机制,进而发现新的生物标志物和治疗靶点,以个性化方式改善 ASCVD 管理。通过结合从基因型到表型的数据以及涵盖整个组学学科范围的无数分子中间体,我们可以更深入地了解动脉粥样硬化的复杂性并减轻其社会负担。不同组学,包括基因组学 [ 6 , 7 ]、表观遗传学 [ 8 ]、转录组学 [ 9 ]、蛋白质组学 [ 10 ] 和代谢组学 [ 11 – 13 ],有助于全面了解动脉粥样硬化的各个分子和病理生理方面,这对临床应用至关重要。
20 世纪 90 年代共产主义的终结可能是近代历史上最根本的机构重组。其核心是对以前国有企业的大规模重新分配。我们构建了一个独特的公司级数据集来研究东德的这种重新分配,整个国有经济在不到五年的时间内要么被私有化,要么被清算。我们研究了私有化当局是否遵循了其使用初始劳动生产率来表明企业竞争力的授权,将竞争性企业私有化。我们的结果表明,基线生产率较高的企业更有可能被私有化,产生更高的销售价格,更有可能被西德投资者收购,并且更有可能在脱离公有制 20 年后继续经营。私有化机构通过对生产性企业进行评级和优先排序,可能促成了这些结果。