近年来,基于电路量子电动力学(cQED)的量子计算取得了进展。我们可以利用谐振器实现量子非破坏性测量,或者通过珀塞尔效应控制量子比特的衰减[1-4]。然而,由于光刻可扩展性,超导量子比特的数量不断增加,可能会达到有噪声的中型量子计算[5],芯片尺寸等限制使量子网络难以扩展。除了cQED,一个有希望扩大电路规模的候选者是波导QED,它有助于在远距离组件之间交换信息。我们可以在波导介导的相互作用系统中观察到一些光学现象,如电磁诱导透明(EIT)和法诺共振[6-10]。这些干涉效应取决于量子比特的频率失谐和位置,为量子存储和量子信息的应用带来希望。我们可以进一步将量子比特置于特定的分离中,实现原子级镜像或空间纠缠的流动光子[11,12]。然而,开放环境中的衰减损失限制了波导介导的门保真度。作为一种潜在的解决方案,一些基于“巨原子”的理论和实验引起了人们的关注[13-21]。在这里,量子比特与波导有多个连接点,并通过干涉效应防止退相干。这种设计也可以扩展到
管理和恢复计划列出了管理、恢复和/或保护所列物种所需的合理行动。《受保护物种修正案》(2003 年)将恢复定义为任何能够保存、保护或恢复受保护物种的行动(无论是监测、评估、研究、恢复、维护还是管理)。环境和自然资源部 (DENR) 发布管理和恢复计划,有时在实地科学家、其他政府部门以及其他受影响和感兴趣的各方(作为独立顾问)的协助下制定。计划在被 DENR 采纳之前要经过额外的同行评审,并在第 II 部分和第 III 部分中提到的相关方的批准下制定。管理计划的目标将得以实现,必要的资金将根据影响相关方的预算和其他限制提供。管理计划可能不代表参与计划制定的任何个人或机构的观点、官方立场或批准,我们除外。只有在主任签字批准后,它们才代表 DENR 的官方立场。已批准的计划可能会根据新发现、物种状态变化以及管理和/或恢复行动的完成情况进行修改。本文件的文献引用应为:Copeland,AI 2020。百慕大巨型陆蟹(Cardisoma guanhumi)管理计划。百慕大政府环境和自然资源部。36 页。本管理计划的电子版也可在 www.environment.bm 上获取
众所周知,所有铁电材料都是压电材料,因此外部压力会使这些系统的尺寸变形,从而根据其传感能力产生合适的压力传感器。在所有铁电材料中,铅 (Pb) 基铁电材料由于其高灵敏度和耐用性而被发明并用作压力传感器。1 – 7 在过去的几十年里,这些系统已被用作电容器、传感器、执行器和静电设备等。8 – 17 过去,包括我们小组在内的许多作者都报道过在低压和高压范围内适用于压力传感器的铅基材料,其中介电常数、压电系数和电容电抗随压力发生显著变化。 1 – 3,5 – 7,13,18 – 26 然而,压力对介电常数变化的影响并不显著,以至于无法在实际高压传感器装置中实现。另一个缺点是介电常数与压力呈线性关系。为了克服这些缺点,我们一直在寻找具有高灵敏度和线性度的新型陶瓷材料。为了实现这一目标,我们选择了众所周知的 Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) 作为母体基质,并用适当的 Bi 浓度替代。
2020 年 1 月,国际行星科学界齐聚伦敦,共同致力于实现首个专用机器人任务,探测遥远的冰巨星天王星和海王星,这是太阳系中唯一尚未被全面探索的主要行星类型。冰巨星大小的星球似乎是行星形成过程的常见结果,并且对我们理解奇异的富含水的行星内部、动态和寒冷的大气层、复杂的磁层结构、富含地质的冰卫星(天然和捕获的)和精致的行星环提出了独特而极端的考验。本文介绍了 2020 年代初冰巨星系统探索的特刊。我们回顾了未来几十年雄心勃勃的国际伙伴关系在探索天王星和/或海王星方面的科学潜力和现有的任务设计概念。
晶粒是微观固体颗粒,可以在温度和压力的值和压力的典型压力下凝结,后期型巨人和超级巨星的延伸大气的典型压力。它们在这些环境中的存在由许多红外光谱特征(例如,由于硅酸盐而导致的9.7 µm频带)指示,它们可以出现在红色巨人和超级巨人的光谱中。这些恒星的风负责将晶粒分布到星际介质中,随后它们可以通过原子积聚生长。星际颗粒或通常被称为灰尘,是使用星际培养基的重要组成部分。它们调节ISM的加热和冷却,充当H 2分子形成的催化剂,当然是造成星际灭绝的造成的,该过程会使全明星的光重新变红。
作者格式,未经同行评审的文件发布于2024年11月13日。doi:https://doi.org/10.3897/arphapreprints.e141642
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
量子电动力学中光与物质相互作用的模型通常采用偶极近似 1,2,其中与原子相互作用的电磁模式的波长相比,原子被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极近似不再成立,原子被称为“巨原子” 2,3 。到目前为止,巨原子领域固态器件的实验研究仅限于耦合到短波长表面声波的超导量子比特 4–10 ,只探测单一频率下的原子特性。在这里,我们使用一种替代架构,通过将小原子在多个但分隔良好的离散位置耦合到波导来实现巨原子。该系统能够实现可调原子-波导耦合,具有较大的开关比 3 ,并且耦合谱可通过器件设计进行工程设计。我们还展示了多个巨型原子之间的无退相干相互作用,这些相互作用由波导中的准连续模式谱介导,这是使用小原子无法实现的效应 11 。这些特性允许此架构中的量子比特在原位在受保护和发射配置之间切换,同时保留量子比特-量子比特相互作用,为高保真量子模拟和非经典巡回光子生成开辟了可能性 12,13 。
光与物质相互作用的模型通常采用偶极子近似 [1,2],在该近似中,原子与与之相互作用的电磁模式的波长相比,被视为点状物体。然而,当原子尺寸与模式波长之比增加时,偶极子近似不再成立,原子被称为“巨原子” [2,3]。到目前为止,对巨原子领域固态器件的实验研究仅限于与短波长表面声波耦合的超导量子比特 [4-10],仅探测单一频率下的原子特性。在这里,我们采用了一种替代架构,通过将小原子与多个但相隔良好、离散的位置的波导耦合来实现巨原子。我们对巨原子的实现使得可调的原子-波导耦合成为可能,该耦合具有大的导通比,并且可以通过器件设计来控制耦合谱 [3]。我们还展示了多个巨原子之间的无退相干相互作用,这种相互作用由波导中模式的准连续谱介导,这是小原子无法实现的效应 [11]。这些特性使该架构中的量子比特能够在保护配置和发射配置之间原位切换,同时保留量子比特之间的相互作用,为高保真量子模拟和非经典巡回光子生成开辟了新的可能性 [12, 13]。原子直接耦合到波导的器件可以通过波导量子电动力学 (wQED) 很好地描述。超导电路为实现和探索 wQED 物理提供了一个理想的平台,因为它可以实现
NATURE IN SINGAPORE 17 : e2024115 Date of Publication: 29 November 2024 DOI: 10.26107/NIS-2024-0115 © National University of Singapore Biodiversity Record: A giant Amazon river turtle, Podocnemis expansa , at Punggol Tan Jian Qing Email: tanjianqing.personal@gmail.com Recommended citation.tan JQ(2024)生物多样性记录:位于Punggol的巨型亚马逊河龟,Podocnemis especta。新加坡的自然,17:e2024115。doi:10.26107/nis-2024-0115主题:巨型亚马逊河龟,podocnemis膨胀(Reptilia:testudines:pleurodira:pleurodira:podocnemididae)。主题:Kelvin K. P. Lim。位置,日期和时间:新加坡岛,Punggol; 2024年9月7日;大约1715小时。栖息地:Urban Parkland的淡水池塘。观察者:谭简。观察:观察到约40厘米甲壳长度的一个例子约15分钟在池塘边缘游泳(图。1–3)并跟随观察者的运动。尽管它是在许多红线滑块(Trachemys Scripta Elegrans)的公司中,但它几乎与他们相互作用(图。2)。