摘要:FUT8 是一种必需的 α -1,6-岩藻糖基转移酶,可使 N-糖链最内层的 GlcNAc 发生岩藻糖基化,这一过程称为核心岩藻糖基化。在体外,FUT8 表现出对双触角复合 N-糖寡糖 (G0) 的底物偏好,但 N-糖链所附着的底层蛋白质/肽的作用仍不清楚。在这里,我们用一系列 N-糖寡糖、N-糖肽和 Asn 连接的寡糖探索了 FUT8 酶。我们发现底层肽在少甘露糖(低甘露糖)和高甘露糖 N-糖链的岩藻糖基化中发挥作用,但对复合型 N-糖链不起作用。使用饱和转移差异 (STD) NMR 光谱,我们证明 FUT8 可识别 G0 N-糖链的所有糖单元和大多数氨基酸残基 (Asn-X-Thr),这些残基可作为寡糖基转移酶 (OST) 的识别序列。在存在 GDP 的情况下观察到最大的 STD 信号,这表明 FUT8 必须先与 GDP-β-L-岩藻糖 (GDP-Fuc) 结合才能最佳地识别 N-糖链。我们利用 CHO 细胞的糖基化能力基因工程来评估 FUT8 在具有一组特征明确的治疗性 N-糖蛋白的细胞中对高甘露糖和复合型 N-糖链的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型 N-糖链上,尽管显然只发生在选定的糖基位点上。消除细胞中复合型糖基化能力(KO mgat1)表明,当转化为高甘露糖时,具有复合型 N-糖的糖基位点会失去核心岩藻糖基化。然而有趣的是,对于在有效获取四天线 N-糖方面并不常见的促红细胞生成素,在高甘露糖 N-糖上,三个 N-糖基化位点中有两个获得了岩藻糖基化。对几种蛋白质晶体结构的 N-糖基化位点的检查表明,核心岩藻糖基化主要受 N-糖的可及性和性质的影响,而不是受底层肽序列的性质的影响。这些数据进一步阐明了细胞体外和体内不同的 FUT8 受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。关键词:FUT8、核心岩藻糖基化、N-糖基化、STD NMR、酶动力学、高甘露糖N-聚糖、复合N-聚糖、寡甘露糖型N-聚糖■ 引言
o -glcnacylation被认为在阿尔茨海默氏病中的tau病理发展中起作用,因为它可以调节Tau的聚集倾向。o -Glcnacylation由2种酶调节:O -GlCNAC转移酶和O- Glcnacase(OGA)。开发宠物示踪剂将是开发OGA治疗性小分子抑制剂的必要工具,从而实现靶向参与和剂量选择的临床测试。方法:筛选小分子化合物的集合,以抑制活性和与OGA的高度结合,以及有利的宠物示踪剂(多药耐药蛋白1 ef toplip of,中枢神经系统宠物系统宠物系统宠物多组合表的优化)等)。选择了两种具有较高属性的铅化合物,并且选择了OGA的选择性,以进一步实现,包括使用放射性访问结合测定法与组织匀浆的OGA结合。使用大鼠未标记化合物的微剂量方法建立了体内药代动力学。在带有11个标记化合物的啮齿动物和非人类培养物(NHP)中进行了体内成像研究。结果:两个选定的候选者Bio-735和Bio-578在体外显示出有希望的属性。用Tritium进行放射性标记后,[3 H] Bio-735和[3 H] Bio-578在啮齿动物脑匀浆中结合的结合分别表现出0.6和2.3nm的解离结合体。的结合被同源化合物和硫代thiamet G抑制了浓度,这是一种良好的特征和结构上多样的OGA抑制剂。成像研究表明,在非二型活性化合物存在下,这两种示踪剂在大脑中都具有很高的吸收,并且抑制了与OGA的结合。然而,只有BIO-578在具有11 c标记分子的PET研究的时间范围内显示出可逆的结合动力学,以使用动力学建模来实现定量。示踪剂摄取的植物与10 mg/kg的阻塞剂量结合在一起。铅化合物BIO-578在啮齿动物和人类后脑组织中对OGA的高度和选择性表现出很高的选择性,从而在NHP中进行了进一步的测试。NHP PET成像研究表明,示踪剂具有出色的脑动力学,并完全抑制了硫胺素G的特定结合。这些结果表明,示踪剂[11 C] Bio-578非常适合在人类中进一步表征。
寡糖(来自希腊语ὀλίγοςOlígos,“少数”和σάκχαρSácchar,“糖”)是糖(糖)聚合物,其中包含少量数量(通常为3-10个或更多)单糖(简单糖)。与大多数其他哺乳动物的牛奶不同,人乳是独特的,因为它含有高浓度的150多种不同且结构上不同的寡糖。实际上,对于5-15 g/L,成熟牛奶中的人牛奶寡糖(HMO)的总浓度通常超过人奶蛋白的总浓度,使HMOS成为仅次于简单的牛奶糖乳糖和脂质的第三大分子,而不是计算水[1]。HMO包含多达5个不同的构建块(单糖):葡萄糖(GLC),半乳糖(GAL),N-乙酰基葡萄糖胺(GLCNAC),Fucose(FUC)和唾液酸(SIA)。根据使用了哪些构建块以及如何将它们链接在一起[1],从而生成不同的HMO。图1a显示了HMO结构组件的蓝图。所有HMO在还原端携带乳糖(GALβ1-4GLC)。乳糖可以通过二糖乳糖-N-生物(GALβ1–3GLCNAC)或n-乙酰氨基胺(GALβ1-4GLCNAC)的添加来拉长。乳糖或细长链可以用唾液酸在α2-3-或α2-6-链接中修饰,在α1-2-,α1-3-或α1-3-或α1-4链接中进行葡萄糖基化,从而大大扩展了HMO结构组合的多样性。对于外部,每种唾液酸单糖都包含一个羧基,并引起对HMO分子的负电荷,从而改变了其结构特性。HMO结构通常决定其功能[2]。尽管HMO组成遵循基本的蓝图和150多个不同的HMO,但迄今已确定了150多个不同的HMO,但重要的是要注意,每个女性都合成并分泌出不同的HMO组成曲线,在不同女性之间有很大的不同(图1b),但在同一妇女的哺乳过程中保持相当恒定[3]。到目前为止,我们的实验室已经分析了从世界各地女性收集的10,000多个牛奶样本中的HMO组成,作为各种协作项目的一部分。图1C列出了主成分(PC)图中的某些数据,再次强调了女性之间的HMO组成图谱有所不同,但也存在明显的HMO剖面簇或HMO lactotypes。