电子纺织品[5] 柔性触摸界面[6] 软机器人[7] 医疗监测[8] 和能量收集。[9] 智能材料在这些应用中占有重要地位。它们可以被描述为对外部刺激(以化学或物理刺激的形式)做出反应的材料,从而导致材料特性发生特定变化。如今,已经开发出多种智能聚合物材料,用于电容式或电阻式压力传感器以及湿度检测等应用。相对湿度是从农业生产到医疗监测等不同领域需要考虑的重要参数。[10,11] 人们提出了各种湿度传感器,它们具有多种传感技术,例如电容式、电阻式、电磁式、重量法和光学读数。[12,13] 电容式湿度传感器由夹在两个电极之间的活性传感材料制成。对于这种类型的传感器,人们实施了不同的方法来提高其灵敏度。第一个重要因素是传感材料的物理性质。许多研究人员对金属有机骨架 (MOF) 的使用很感兴趣,因为它们具有高孔隙率和高比表面积,可用于
使用可再生废物原料是一种环境友好型选择,有助于降低废物处理成本并提高工业副产品的经济价值。甘油(1,2,3-丙三醇)是一种简单的多元醇化合物,广泛分布于生物系统中,是生物过程中相对便宜且易得的底物的主要例子。甘油被广泛用作食品和制药工业的成分,也是生物柴油生产的主要副产品,这导致底物价格多年来逐渐下降。因此,甘油已成为生物技术中一种有吸引力的底物,目前从石油中生产的几种化学商品已被证明是使用野生型和工程菌株的全细胞生物催化剂从这种多元醇中获得的。具有多功能和丰富代谢的假单胞菌种已被用于
进行热交换器,制冷系统或发电厂。不幸的是,通常的传热液(例如水和聚合物溶液)具有相对较低的热电导率。改善热萃取的一种方法是将传热液的流量与某些固体材料的高热电导率相结合,例如金属,金属氧化物或不同的碳材料:碳黑[6],碳纳米管[9],碳纳米含量[4] [4]或石墨烯Nananoplatelets [29]。然而,使用微米尺寸的固体材料的悬浮液会导致并发症,例如磨损,沉积和堵塞。石墨烯是六角形键合的碳原子的单原子薄片,由Novoselov等人优雅地获得并表征。[18],现在是研究最多的材料之一。The importance of graphene nanoplatelets and their benefits have been investigated, and the following advantages have been mentioned [ 22 ]: (1) it is relatively easy to synthesize, (2) it has long suspension time (leading to stable particle suspensions), (3) graphene nanoplatelets have large surface area/volume ratio, and (4) present low erosion, corrosion and clogging.这种悬浮液的动态粘度也是传热中实际应用的重要特性。大多数科学文献是关于水中的悬浮液,有时是表面活性剂/分散剂[1、2、10、12、19],证明了石墨烯纳米片浓度会导致粘度非线性增加。meh-Rali等。伊朗曼什等人。此外,几位作者研究了石墨烯纳米片的粘度[27],并显示出强大的温度降低。[16]制备的均质石墨烯纳米板 - 让使用高功率超声探针的悬浮液,以浓度为0.025、0.05、0.05、0.075和0.1质量%,对300、500、500、500和750 m 2 g-1的三个不同表面区域进行悬浮液。他们测量了在20至60°C的温度下,水平纳米片的粘度与剪切速率的粘度。观察到粘度随温度降低,但对浓度和特定表面积敏感。在水中,graphene纳米片悬浮液的样品也表现出剪切粉,可以解释如下。在较低的剪切速率下,随着纳米板旋转的液体旋转,它们逐渐使它们沿增加剪切的方向对齐,从而产生较小的耐药性,从而降低粘度。当剪切速率足够高时,达到了最大可能的剪切顺序,骨料分解为较小的尺寸,降低粘度[7,25]。[11]还研究了分散在蒸馏水中的石墨烯纳米片的粘度和热导电,并研究了三个有影响力的参数,包括浓度,温度和特定表面积。他们提出了相对粘度作为不同特定表面积,浓度和温度的函数的相关性。
描述RNase抑制剂(不含甘油)是一种重组蛋白,通过以1:1的比例非共价结合来抑制不同的RNase(a,b,c)。在10 14 m的缔合常数中,RNase抑制剂(不含甘油)在RNass存在是潜在问题的任何应用中都是有用的。无甘油制剂确保RNase抑制剂(无甘油)与冻干格式的兼容性。
生物柴油的生产已成为全球努力替代化石燃料的重要组成部分。然而,生物柴油生产中面临的问题之一是甘油产量增加,作为一种产物。甘油或粗甘油(CG)通常是大量生产的,需要明智地管理。本文讨论了生物柴油生产中的甘油作为生物乙醇生产的原料的潜在利用。通过优化发酵过程,基因工程技术和纯化,可以将甘油转化为生物乙醇。生物乙醇是环保的可再生燃料之一。基因工程技术的进步还支持甘油转化为生物乙醇的成功,从而可以发展更有效和生产性的微生物。这为减少浪费,支持资源的可持续性并通过使用甘油作为生物乙醇的原料来减少浪费,支持化石燃料的依赖。将甘油转化为生物乙醇是迈向更可持续和可再生能源的一步。 关键词:生物乙醇,可再生能源,可持续性,基因工程将甘油转化为生物乙醇是迈向更可持续和可再生能源的一步。关键词:生物乙醇,可再生能源,可持续性,基因工程
摘要背景:本研究是一项前瞻性连续双盲随机研究的子研究,研究前列环素对重度创伤性脑损伤 (sTBI) 的影响。本研究的目的是调查脑和皮下甘油水平之间是否存在相关性,以及脑和皮下组织间质甘油的比率(脑甘油/皮下)是否与脑组织损伤有关,使用鹿特丹评分、S-100B、神经元特异性烯醇化酶 (NSE)、损伤严重程度评分 (ISS)、急性生理与慢性健康评估评分 (APACHE II) 和创伤类型进行测量。探讨了与临床结果的潜在关联。方法:纳入年龄在 15-70 岁之间的 sTBI 患者,格拉斯哥昏迷量表评分 ≤ 8。通过微透析测量了 48 名患者的脑和皮下脂肪组织甘油水平,其中 42 名具有完整的数据可供分析。还使用脑计算机断层扫描的鹿特丹分类和生化生物标志物 S-100B 和 NSE 来评估脑组织损伤。结果:在 60% 的患者中,观察到脑/皮下甘油呈正相关。脑/皮下甘油呈正相关的患者的脑甘油水平略高于呈负相关的患者。计算机断层扫描鹿特丹评分与脑/皮下甘油之间没有显著关联。S-100B 和 NSE 与脑/皮下甘油概况相关。我们的结果无法通过使用损伤严重程度评分或急性生理和慢性健康评估评分来衡量的创伤的总体严重程度来解释。结论:我们已经表明外周甘油可能流入大脑。这种影响与更严重的脑组织损伤有关。这种变化使脑间质甘油水平的解释变得复杂。我们提醒临床医生,如 sTBI 中出现的血脑屏障受损可能会改变各种物质的浓度,包括脑中的甘油。意识到这一点对于床边数据解释和研究都很重要。关键词:创伤性脑损伤、甘油、S-100B、神经元特异性烯醇化酶、微透析、脑计算机断层扫描、结果
摘要研究了带有硅胶支持的上流厌氧反应器中细菌群落的演变,该反应堆不断地用纯甘油(第0-293天)和粗甘油(第294-362天)喂食。来自以前甘油降解反应堆的生物量用作接种物。用粗甘油获得了1,3-丙二醇(PDO)(PDO)(PDO)(PDO)(0.62 mol.mol-gly-Gly-1和14.7 G.l -1 .d -1)。接种物的多样性较低,乳酸杆菌(70.6%)和克雷伯氏菌/劳尔特拉(23.3%)的优势占主导地位。在用纯甘油喂养293天后,在附着的生物膜或生物量中生长的悬浮液中,两个分类单元的丰度均下降到小于10%。梭子座属和雷诺罗卡科家族的成员随后成为多数。在用粗甘油进食后的时期,梭状芽胞杆菌仍然是生物膜中的多数属。然而,它在悬浮液中部分替换为非甘油降解细菌的Eubacterium。这一事实以及生物膜中其他甘油降解属的流行率,例如磷酸胶产物和乳酸杆菌,表明附着在硅酮支撑上的细菌负责将甘油转化为1,3-PDO。因此,为了提高1,3-PDO的生产率,一种良好的方法是最大化反应堆支撑量。其他不降解甘油的属,例如厌氧菌和乙美环,以牺牲细胞衰减材料为代价。规范对应分析表明,甘油的起源是生物反应器操作期间要考虑的重要变量,用于产生1,3-PDO,而甘油加载速率却不是。
摘要:通过减少二氧化碳纤维细纹来降低温室效应的必要性,指示食品包装技术使用生物基材料。藻酸盐是源自棕色藻类物种的,是开发能够保护食物免受氧化/细菌变质的可食用活性涂层的最有希望的生物聚合物之一。在这项研究中,藻酸钠用甘油塑化并与生物基的百里香醇/天然霍洛伊石纳米杂交混合,用于开发新型的可食用活性涂层。纳米复合材料也是通过将纯喇叭岩与藻酸钠/甘油基质混合并出于比较原因将其用作参考材料的。仪器分析表明,与纯藻酸钠/甘油基质相比,百里香/hoy虫纳米杂化与藻酸钠/甘油基质相比具有更高的兼容性。提高兼容性导致拉伸特性,水/氧屏障特性和总抗氧化活性。与未涂层的奶酪相比,这些可食用的活性涂层被应用于传统的希腊奶酪,并在一个log10单元(CFU/g)上显示中介微生物种群的减少。此外,随着梭子石和百里醇含量的增加,中嗜微生物种群的减少增加,表明这种藻酸钠/甘油/百里香醇/甲醇/hay虫水凝胶是奶牛产物的有希望的可食用的活性涂层。
复原 我们建议在打开前先短暂离心此小瓶,使内容物沉至底部。请使用去离子无菌水复原蛋白质至浓度为 0.1-1.0 mg/mL。我们建议添加 5-50% 甘油(最终浓度)并分装以在 -20°C/-80°C 下长期储存。我们默认的甘油最终浓度为 50%。客户可以将其作为参考。