摘要:图形/网络已成为数据建模的强大分析方法。此外,随着传感器技术的进步,动态的时间不断发展的数据变得越来越普遍。在这种情况下,一个兴趣点是对网络内部和网络之间的信息流的更好理解。因此,我们旨在推断网络时间序列之间的Granger因果关系(G-CAUSALITY)。在这种情况下,完善的矢量自回归模型的直接应用是不可行的。因此,我们需要一个理论框架来建模时间变化图。一种可能性是考虑一个具有时变参数(假定为随机变量)的数学图模型。假设我们识别图模型参数之间的g-causality。在这种情况下,我们可以使用它来定义图之间的g-果实。在这里,我们表明,即使模型未知,光谱半径也是某些随机图模型参数的合理估计。我们说明了我们的提议的应用,以研究对照组的大脑半球与被诊断为自闭症谱系障碍(ASD)的儿童之间的关系。我们表明,ASD和对照之间的G-伴侣强度从大脑的右侧到左半球有所不同。
近年来,基于脑电图(EEG)数据的情感计算吸引了人们的注意力越来越多。作为经典的EEG特征提取模型,Granger因果关系分析已被广泛用于情感分类模型,该模型通过计算EEG传感器之间的因果关系并选择关键的EEG特征来构建大脑网络。传统的EEG Granger因果关系分析使用L 2规范从数据中提取特征,因此结果容易受到脑电图的影响。最近,一些研究人员提出了基于绝对收缩和选择操作员(Lasso)和L 1/2规范的Granger因果关系分析模型来解决此问题。但是,常规的稀疏Granger因果关系分析模型假设每个传感器之间的连接具有相同的先验概率。本文表明,如果可以将每个传感器的脑电图数据之间的相关性添加到Granger因果关系网络中,则可以作为先验知识,则可以增强稀疏Granger因果模型的EEG特征选择能力和情感分类能力。基于这个想法,我们提出了一个新的情感计算模型,该模型将基于传感器相关(SC-SGA)的稀疏Granger因果关系分析模型。SC-SGA基于L 1 /2规范框架进行特征提取,将传感器作为先验知识之间的相关性与Granger因果关系分析,并使用L 2 Norm Logistic回归作为情感分类算法。我们使用两个真实的脑电图数据集报告了实验的结果。这些结果表明,SC-SGA模型的情绪分类准确性比现有模型的情绪分类精度高出2.46–21.81%。
This paper uses panel Granger causality estimations with the approaches developed by Nair- Reichert and Weinhold (2001), and Bangake and Eggoh (2011) as well as the Dumitrescu and Hurlin (2012) test, with the algorithm developed by Lopez and Weber (2017), to analyse the causality relations between all the nine IMF financial development indices, and the real GDP growth considering a sample of 46各大洲在1990年至2017年间都传播的国家。获得的结果揭示了这些因果关系的动态特征,总体而言,将金融机构指数与金融市场指数的指数进行比较时,没有发现显着差异。结果证实了双向因果关系的存在,尽管对所有IMF指数没有相同的统计鲁棒性,从而解决了金融发展的相关方面:金融机构和市场的访问,深度和效率。