摘要。制药业的进步和对精准治疗效果的日益增长的需求推动了药物输送的发展。然而,精确控制治疗效果和降低生物毒性限制了该领域的进一步发展。为了克服这些障碍,智能药物输送系统 (DDS) 已经开发出来。DDS 集成了先进技术,以减少给药频率并维持目标药物浓度。纳米材料,特别是石墨烯及其衍生物,由于其出色的物理化学性质(包括高强度、高表面积和高生物相容性),在 DDS 中显示出巨大的前景。因此,研究石墨烯及其在 DDS 中的应用非常重要。本文简要介绍了利用石墨烯及其衍生物(如氧化石墨烯、还原氧化石墨烯和纳米氧化石墨烯)进行药物输送的最新进展。它首先讨论了石墨烯及其衍生物的特性。然后,概述了这些纳米材料在 DDS 中的应用,特别是作为肿瘤治疗、抗菌治疗和基因治疗的光疗法的药物载体。该工作将有助于促进石墨烯在药物递送系统中的进一步应用。
到加泰罗尼亚(ICN2),CSIC, 照片科学(ICFO), IMB-CNM(CSIC)剑, (ESI)可用。 请参阅doi:到加泰罗尼亚(ICN2),CSIC,照片科学(ICFO), IMB-CNM(CSIC)剑, (ESI)可用。请参阅doi:
抽象目标传统的玻璃离子水泥(GIC)被认为是最普遍的修复材料。机械质量降低和耐磨性降低一直是其广泛临床应用所面临的主要挑战。这项研究旨在评估氟化石墨烯(FG)氧化物模型的常规GIC的机械性能。使用不同浓度(0WT%)对照组的FG/GIC样品的复合材料(来自Promedica,Germany,Shade A3)和(1WT%,2WT%和3WT%FG)组的材料和方法使用圆柱形模具(3mm 6mm)。fg是使用水热技术制备的,并使用Xpert-Pro粉末衍射仪系统进行X射线衍射分析和JEOL JEOL JEM-2100高分辨率透射透射电子显微镜进行表征。测量了Vickers的硬度和GI样品的耐磨性。使用机器人咀嚼模拟器与热环协议(型号ACH-09075DC-T,Ad-Tech Technology Co.,Ltd。,Leinfelden-Echterdin- Gen,Gen,Div>使用机器人咀嚼模拟器,leinfelden-echterdin- Gen,Gen,Gen)进行机械磨损。组之间相对于正态分布的数字变量的统计分析比较使用方差测试进行单向分析,然后进行后测试。使用配对的t检验用于比较同一组中的数据。结果:GIC(1WT%FG)和(2wt%FG)复合材料的表面粗糙度值显着低于对照组和3WT%FG组的复合材料。Vickers的硬度数在FG/GICS复合材料中比对照组高得多(p 0.05)。结论GIC/FG组合具有足够的强度,可以抵抗用硬度改善的遮挡应力。GIC/FG似乎是一种有前途的修复材料。
摘要:本文的重点是基于石墨烯和天然聚合物(例如纤维素和壳聚糖)的导电纳米复合材料的开发。石墨烯是排列在蜂窝晶格中的单层碳原子,具有非凡的电气,机械和热性能,使其成为聚合物复合材料的吸引人填充物。但是,挑战在于有效地将石墨烯片分散在聚合物矩阵中。所介绍的工作探讨了将多糖链接枝到氧化石墨(氧化石墨烯)上的新策略,以改善其在纤维素和壳聚糖基质中的兼容性和分散性。将所得的复合材料与金或镍纳米颗粒掺杂,以进一步增强其电和催化特性。采用了详细的表征技术,包括光谱和微观方法,用于分析已发达的纳米复合材料的结构,形态和特性。论文分为三个主要部分:1)关于石墨烯,多糖及其生物复合材料的文献综述; 2)描述实验材料和方法; 3)对结果的科学讨论,以三个研究出版物的形式提出。研究结果表明,成功合成了具有提高兼容性和性能的导电纳米复合材料,为在电子,催化和电磁屏蔽等区域中应用这些可持续性和多功能材料开辟了新的途径。
4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。 摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。 但是,CP通常在循环稳定性和能量密度方面面临局限性。 最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。 本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。 通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。 本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。4化学系,Sri Guru Teg Bahadur Khalsa学院,Anandpur Sahib-140118,印度旁遮普邦。摘要:超级电容器(SC)的高效电极材料的发展引起了人们的重大关注,由于其高孔隙率,成本效益,合成性易于合成和可调电导率,导致聚合物(CPS)作为有希望的候选者出现。但是,CP通常在循环稳定性和能量密度方面面临局限性。最近的研究集中在CP与金属氧化物(MOS)和碳基材料的协同整合,形成复合电极,具有增强的电导率,机械耐用性和改善的电化学性能。本评论突出了将CP与MOS和石墨烯衍生物相结合以解决这些局限性的新方法,从而导致了较高的能量存储能力。通过概述该领域的最新进展,我们旨在阐明这些协同相互作用及其对电极性能的影响的机制。本文强调了下一代超级电容器设计中创新的潜力,为更高效,更耐用的储能解决方案铺平了道路。
摘要:锂离子电池的质量受阴极的显着影响。除了在容量和循环寿命方面的优势外,NMC阴极具有较低的电子电导率,这可能会影响电子传输。为提高电导率,可以使用导电添加剂添加阴极材料。通常用作锂离子电池阴极中的导电添加剂是乙炔黑色。另一方面,石墨烯具有较高的特性,例如其较大的活动表面积和电导率。进行了这项研究,以将AB,石墨烯及其组合作为NMC阴极的导电添加剂进行比较。测试结果表明,AB和石墨烯与1:1的比率的组合产生的最高特异性能力,即161.32 mAh/g。该组合产生的速率性能结果非常好,在3c电流下,分别为排放和充电率的效率分别为91.38%和80.07%的容量保留。在50个周期后的生命周期测试中,AB和石墨烯的组合为1:1,导致容量的保留率为93.26%,高于仅使用AB或石墨烯作为阴极的导电材料的电池。因此,在锂离子电池中,石墨烯和AB作为导电材料的组合可以产生具有良好性能的电池。
摘要:通过光化学方法将太阳能转换为燃料/化学物质,对满足全球能源需求的有很大的希望。目前,由于其氧化性和可还原性的双重优势,半导体光电素与氧化还原技术结合在污染物降解和继发能量产生方面进行了深入研究;但是,仍然存在挑战,特别是随着转化效率提高。自2004年石墨烯的初步引入以来,由于其特性较大的特定表面积,丰富的孔结构,可调节的带隙和高电导性,因此,三维(3D)基于石墨烯的光催化剂引起了极大的关注。在此,本综述提供了基于3D石墨烯的常用光催化剂的深入分析,概述了其构造策略以及最近在有机污染物的光催化降解中的应用,H 2 Evolution和CO 2减少。此外,本文探讨了3D石墨烯在增强光催化性能中所起的多方面角色。通过提供全面的概述,我们希望强调3D石墨烯是一种对环境有益的材料的潜力,并激发为未来应用的更高效,更具用力的基于石墨烯的气瓶光催化剂的开发。
由于其出色的强度,对腐蚀,可负担性和易于制造的耐药性,铝及其合金被广泛用于许多不同的工程目的。铝及其合金由于负担能力和易于制造而广泛用于许多工程领域。[1-3]。硬度刚度,压缩强度和强抗拉伸能力的程度是铝合金混合纳米复合材料(AAHNCS)的一些所需特征。与纯合金相比,这些材料表现出更大的耐磨性。这些材料用于多个行业的许多结构应用,例如汽车,飞机和海洋。可以在卡车框架,机车教练,建筑物,塔楼,陆军和工业桥,航空航天利用和造船厂的活动中找到AA 6061的重型结构用途。在其极好的电导率,缺乏密度,高强度和对腐蚀性的抵抗力以及更大的能力以及机器的能力。AA 6061是最常用的矩阵材料[1,4-5]。金属基质复合材料(MMC)最近获得了丰富的焦点,因为它们具有出色的机械品质,它们具有耐磨性和机械强度。空间结构,滑动电触点,
稿件收到日期为 2024 年 6 月 20 日;接受日期为 2024 年 7 月 25 日。出版日期为 2024 年 7 月 31 日;当前版本日期为 2024 年 9 月 27 日。这项工作部分由波兰国家科学中心资助,协议编号为 OPUS 2019/33/B/ST3/02677;部分由波兰国家研究与发展中心资助,协议编号为 M-ERA.NET3/2021/83/I4BAGS/2022;部分由 M-ERA.NET3 通过欧盟“地平线 2020”研究与创新计划资助,协议编号为 958174;部分由波兰教育和科学部资助,项目编号为 0512/SBAD/2420。这封信的审阅由编辑 D. Shahrjerdi 安排。 (通讯作者:Tymoteusz Ciuk。)Tymoteusz Ciuk、Beata Sta´nczyk、Krystyna Przyborowska 和 Dariusz Czołak 就职于 Łukasiewicz 研究网络——微电子与光子学研究所,02-668 华沙,波兰(电子邮件:tymoteusz.ciuk@imif.lukasiewicz.gov.pl)。Corinne Nouvellon 和 Fabien Monteverde 就职于 Materia Nova,7000 Mons,比利时。Semir El-Ahmar 就职于波兹南理工大学物理研究所,61-138 Pozna´n,波兰(电子邮件:semir.el-ahmar@ put.poznan.pl)。本信中一个或多个图表的彩色版本可在 https://doi.org/10.1109/LED.2024.3436050 上找到。数字对象标识符 10.1109/LED.2024.3436050
本研究介绍了新型锡(IV)氧化物 /还原石墨烯(SNO 2 /RGO)纳米复合材料的合成和深入评估,作为晚期电化学超级电容器的电极材料开发了。利用具有优化参数的可扩展合成方法,由X射线衍射(XRD),透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征所得的纳米复合材料,揭示其明确定义的形态,晶体结构和组成。包括射流电荷 - 电荷 - 电荷 - 电荷 - 电荷障碍,电化学障碍光谱(EIS)(EIS)和环状伏安法(CV)的全面电化学评估表明,与纯SNO 2相比,SNO 2 /RGO表现出出色的性能指标。值得注意的是,在1 a g -1的电流密度下,SNO 2 /RGO纳米复合材料达到了140 f g -1的比电容,超过了纯SNO 2的133 f g -1。这些发现突出了SNO 2 /RGO纳米复合材料可显着增强储能能力的潜力,使其成为电动汽车,便携式电子设备和可持续能源系统应用的有前途的候选人。