最大等级= 7.0%可取(最大10.0%获得工程的批准)最大消防车道级= 6.0%最大消防车道横鞋= 3.0%7。显示并标记所有批次和块8。显示典型的人行道位置和标签,如果提出或由建造者或开发人员建造9。显示并标记所有地役类型和宽度10。显示并标记所有水,废水和雨水排水量,尺寸为11。在所有街道路边回报率的展示站和路缘高程中沿所有排水沟线显示流动箭头,包括计划视图中的小街。障碍坡道将安装在所有交叉路口与街道铺路14。提供完整的个人资料,并在轮廓中提供舱口填充区域。和注意:“压实的填充到95%的std proctor密度” H。参考垂直控制台标记信息与所有计划/配置文件上的两个城市GPS控制点有关的信息I.水平和垂直视线距离间隙J.计划尺寸尺度:1“ = 40'水平,1” = 4'垂直(最低)X。排水和洪泛区:
会议主席:Dmitry Eskin,布鲁内尔大学 8:30 AM 介绍性评论 8:35 AM 主题演讲 原铝冶炼中先进过程监控和控制的数据分析:Carl Duchesne 1;1 拉瓦尔大学 9:00 AM 主题演讲 用于评估高安培直流母线的数值建模工具:Andre-Felipe Schneider 1;Daniel Richard 1;Olivier Charette 1;1 Hatch Ltd. 9:25 AM 主题演讲 海德鲁铝业 - 通过建模和数字化实现冶炼厂改进:Nancy Holt 1;1 海德鲁铝业 AS 9:50 AM 主题演讲 透明数据和标准化数据分析对于铝行业脱碳的重要性:Marlen Bertram 1;L. Wu 1; 1 国际铝业协会 10:15 AM 休息 10:30 AM 主题演讲 铝直接冷铸宏观建模问题:Matthew Krane 1;1 普渡大学 10:55 AM 主题演讲 微观结构模拟作为材料性能和铸造缺陷预测的基础:Markus Apel 1;1 Access 亚琛工业大学 11:20 AM 主题演讲 通过应用数字孪生、过程模型和视觉系统提高直流铸造线的安全性和性能:Arild Hakonsen 1;1 Hycast AS 11:45 AM 主题演讲 增加铝回收的数据驱动方法:Elsa Olivetti 1;1 麻省理工学院 12:10 PM 小组讨论
摘要:本研究提出,激光脉冲可以产生有限振幅瑞利波,用于增材制造过程中的工艺监控。非接触式工艺监控使用脉冲激光产生瑞利波,并使用自适应激光干涉仪接收它们。文献中的实验和模型表明,有限振幅波形会随着传播距离而演变,甚至会在平面粒子速度波形中形成冲击波。非线性波形演变表明材料非线性,它对材料微观结构敏感,进而影响强度和断裂性能。测量是在定向能量沉积增材制造室内对平面 Ti-6Al-4V 和 IN-718 沉积物进行的。通过检测平面外粒子位移波形,还可以获得平面位移和速度波形。波形演变可以表征为 (i) 通过在不同点接收一个源振幅,或 (ii) 通过应用不同的源振幅在一个点接收。提供了针对有意调整的关键工艺参数的样本结果:激光功率、扫描速度和舱口间距。
由于严格的环境法规,使用增材制造工艺修复和再制造机械零件引起了广泛关注。定向能量沉积 (DED) 被广泛用于改造机械零件。在本研究中,进行了有限元分析 (FEA),以研究基材相和倾斜角对通过 DED 沉积的哈氏合金 X 区域附近传热特性的影响。设计了考虑焊珠尺寸和图案间距的 FE 模型。采用平面高斯分布的体积热源模型作为 DED 的热通量模型。基材和沉积粉末分别为 S45C 结构钢和哈氏合金 X。在进行 FEA 时考虑了温度相关的热性能。研究了基材相和倾斜角对沉积区域附近温度分布和热影响区 (HAZ) 深度的影响。此外,还研究了沉积路径对 HAZ 深度的影响。分析结果用于确定合适的基底相位和倾斜角度以及适当的沉积路径。
人类社区若要在月球或火星上长期居住,就需要建立一个能够部分或完全自主生产食物的生产单位。生物再生生命支持系统的主要目标之一是利用原地资源为载人任务提供食物来源,并将其转化为维持太空生命所需的食物。水生生物的营养品质使其成为补充已经在太空任务中研究过的光合生物所提供营养物质的潜在候选者。为此,有必要研究鱼类成为太空农业框架内饲养的第一种脊椎动物的潜力。本文通过概述涉及低轨道鱼类的主要太空任务以及详细介绍月球孵化计划迄今为止的成果,探讨了太空水产养殖的前景,该计划正在研究太空水产养殖的可能性。一个有希望的途径是循环水产养殖系统和综合多营养水产养殖,它们回收鱼类废物并将其转化为食物。从这个意义上来说,太空水产养殖的开发和应用与地球上的可持续水产养殖有着相同的目标,因此可以间接参与地球的保护。
9.Pastore,Riclmrd M.,10.埃利斯,威廉 R.,11.珍妮丝,唐纳德·S.,12 岁。希金斯,迈克尔·S.,18 岁。Negaard,Carman D.,14.Vermillion,Robert Y.,15.DcSimone,Frank P.,.Tr.,16.Adcock,Thomas G.,17.Olivares,Eclward J.,18.Lea,Charles E.,19 岁。Roller,Robin .r.,20.米德,达娜 G.,21 岁。沃伦,唐纳德·P.,22 岁。Radler,Clmrles M.,28.Chernault,Tames A.,24.加洛韦,杰拉德 1-0。,,Tr.,25。Wishart,Leonarcl I'.,III,26.Behen,Joseph A.,27 岁。沃尔顿,克利福德 A.,,Tr.,28.Goodson,Hal'l'y C.,III,20.哈奇,亨利.T.,30.古丁,罗纳德·S.,31 岁。卡森, l\fartln B,, 32.Soyster,Harry IU.,33 岁。摩西,查尔斯 C.,34.威廉,埃德蒙 A.. 35.Purdy,约翰 -w.,30.Comeau,Robert F.,37 岁,Tohnsou,Stanley T.. Jr.,88 岁。伯特,约翰 C.,39 岁。波普,唐纳德·R.,40 岁。萨德勒,克莱德 D.,41 岁。Linkos,威廉·G.,
激光粉床融合添加剂制造(LPBF-AM)的金属迅速成为下一代金属零件和许多重要应用中最重要的材料处理途径之一。但是,表征基于激光的LPBF-AM的大型参数空间使得了解控制微结构和机械性能结果的变量是什么。基于直接LPBF-AM处理的敏感性研究是昂贵且冗长的,并且会受到每种打印机的规范和可变性。在这里,我们开发了一种快速通量数值方法,该方法使用动态固化和晶粒生长的细胞自动机模型模拟LPBF-AM过程。这伴随着多晶可塑性模型,该模型捕获了由于复杂的晶粒几何形状而捕获晶界的强化,并提供了所得微观结构的应力应变曲线。我们的方法将处理阶段与机械测试阶段联系起来,从而捕获了处理变量的效果,例如激光功率,激光斑点尺寸,扫描速度和孵化宽度,并在屈服强度和处理材料的切线模量上效果。当应用于纯Cu和不锈钢316L钢时,我们发现激光功率和扫描速度分别对每种材料的晶粒尺寸具有最强的影响。
相对较少的研究研究了除草剂对传粉媒介的直接影响,因此不幸的是,我们不知道大多数除草剂可能对传粉媒介物种产生的影响。但是,研究发现一些常见的除草剂会造成伤害。特别是,通常使用的除草剂草甘膦和包含它的产品已被发现:•干扰蜜蜂的导航能力(Balbuena等人2015)并学习与食物来源相关的信号(MengoniGoñalons和Farina,2018年)。 这可能会影响蜜蜂有效觅食的能力。 •更改蜜蜂的肠道微生物组(Motta等人 2018,Dai等。 2018,Blot等。 2019),这可能会增加对有害疾病的敏感性。 •巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。 Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。 可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。2015)并学习与食物来源相关的信号(MengoniGoñalons和Farina,2018年)。这可能会影响蜜蜂有效觅食的能力。•更改蜜蜂的肠道微生物组(Motta等人2018,Dai等。 2018,Blot等。 2019),这可能会增加对有害疾病的敏感性。 •巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。 Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。 可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。2018,Dai等。2018,Blot等。 2019),这可能会增加对有害疾病的敏感性。 •巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。 Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。 可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。2018,Blot等。2019),这可能会增加对有害疾病的敏感性。•巨型燕尾,spicebush燕尾,黑色燕尾和君主蝴蝶卵暴露于草甘膦的可能性要小得多,孵化的可能性要小得多。Spicebush燕尾鸡的卵损失最大,只有6%的裸露卵孵化,而100%的未暴露卵(Albanese 2019)。可能会在经过处理的区域内及其周围发生巨大的燕尾卵损失。
a Biomath, Ghent University, Coupure links 653, 9000 Gent,Belgium b Center for Advanced Process Technology for Urban Resource recovery (CAPTURE), Frieda Saeysstraat 1, 9000 Gent,Belgium c modelEAU, Université Laval, 1065 avenue de la Médecine , 魁北克 G1 V 0A6, QC, 加拿大 d CentrEau,魁北克水研究中心, 1065 avenue de la Médecine, Québec G1 V 0A6, QC, Canada e Primodal, Inc., 122 Leland Street, Hamilton, Ontario L8S 3A4, Canada f FCG Finnish Consulting Group Ltd, Osmontie 34, P.O. Box 950, FI-00601 赫尔辛基,芬兰 g 开普敦大学土木工程系水研究组,Rondebosch,7700 Cape,南非 h Jacobs,9191 Jamaica St,Englewood,CO 80112,美国 i 化学工程系,巴斯大学,英国巴斯 Claverton Down,BA2 7AY j Hatch, Ltd,加拿大安大略省密西沙加 Speakman Dr 2800 号,L5 K 2R7 k 南京大学宜兴环境研究所,江苏省宜兴市恒通路 128 号,214200,中国 l南京智能科技发展有限公司,南京仁恒置地广场 B 座 706 室,江新洲建业,江苏南京 210019,中国 m 丹麦技术大学环境工程系,Bygningstorvet,115 号楼,2800,Kongens Lyngby,丹麦*通讯作者。电子邮件:elena.torfs@ugent.be
SAMHSA 工作人员出席:Cara Alexander、Paige Alitz、Matthew Aumen、David Awadalla、Aida Balsano、Lauren Barnes、Jacqueline Beale、Jessica Bell、Torrance Brown、Jeanne Casey、Sonia Chessen、Matthew Clune、Tom Coderre、Kawana Cohen-Hopkins、Shawn Cook、Jon Dunbar Cooper、Lisa Davis、Miriam Delphin-Rittmon、Kabaye Diriba、Ingrid多纳托、朱迪思·埃利斯、法比安·埃鲁玛、考特尼·埃斯帕扎、罗恩·弗莱格尔、根尼西·加西亚、吉尔伯特·甘德、梅赫雷特·吉尔梅、考特尼·格洛弗、约瑟夫·格雷、坎迪斯·格里芬、克拉克·哈根、尚特尔·哈特曼、阿林·哈奇、安德鲁·赫林、蔡斯·霍勒曼、约书亚·亨特、维蒂尼娅·约翰逊、伊丽莎·琼斯、劳里·琼斯、安德里亚·卡马戈、克里斯蒂·兰姆、劳拉拉莫特、米歇尔·莱夫、贾瓦娜·洛维特、妮可·卢西亚尼、莱利·林奇、阿玛拉·马特洛克、希瑟·麦克唐纳-斯塔尔纳克、玛吉·麦金尼斯、莉亚·梅希亚、内莉亚·纳达尔、克里斯托弗·奥康奈尔、玛丽安·皮尔斯、莎拉·波特、黛比·里奇、奥纳杰·萨利姆、埃琳·塞帕拉、海登·沈、埃里克·什罗普郡、雷切尔·史密斯、卢克丽霞·斯图尔特、德文·斯威特、劳伦·汤普森、道格·蒂珀曼、布鲁克·崔南、罗伯特·文森特、弗雷德·沃尔普、香农·冯德拉斯、蒂亚·沃克、亚历山大·华盛顿、布伦特·沃茨、贾希·威尔逊、卡梅伦·沃尔夫。
