由 HBr/O 2 组成的等离子体通常用于硅蚀刻工艺,如栅极蚀刻工艺或浅沟槽隔离蚀刻,由于人们对此类化学反应中的硅蚀刻相当了解,因此它成为研究等离子体脉冲对气相和等离子体-表面相互作用的影响的最佳选择。目标是了解连续等离子体和脉冲等离子体之间的根本区别,以及等离子体产生的变化如何影响最终的图案转移。在论文 I 中,我们展示了等离子体脉冲对离子通量和离子能量的强大影响。1 结果显示,占空比 (dc) 而不是脉冲频率对这些参数有显著影响。在本文中,我们重点研究等离子体脉冲对 HBr/O 2 等离子体中的蚀刻机制和图案转移的影响。先前的实验已经证明脉冲等离子体中等离子体引起的损伤有所减少,2 – 4 通常通过使用扫描电子显微镜 (SEM) 成像、椭圆偏振测量和 X 射线光电子能谱 (XPS) 对侧壁钝化层 (SPL) 进行形貌分析。许多作者已经研究了 HBr/O 2 等离子体对硅和 SiO 2 的蚀刻机理。5 – 13 下面总结了 Si 和 SiO 2 蚀刻的基本机理,其中考虑了原料气中极小比例的氧气。含溴、氢和(较少量)氧的离子撞击硅表面、分解、破坏键并形成富含卤素的非晶层,也称为反应蚀刻层 (REL),其中含有 H、Br 和一些 O 原子。非晶层的厚度和成分会根据离子能量、压力和原料气流量而变化。由于氢原子比其他粒子小得多,它们可以更深地渗透到硅层中,然后硅原子可以因碰撞而解吸,或可以融入挥发性物质,如 SiBr 4。含氢分子如 SiH 2 Br 2 的挥发性更强,13 但硅蚀刻并不