包括消防员、面包店工人、农民、建筑工人、矿工、锅炉房工人、工厂工人、公共工程员工、农场工人、废物管理工人、运输和仓库工人、公用事业工人、屋顶工等。室外温度升高也会使室内工人的工作条件恶化,包括使室内环境更难降温。• 在我们的社区,极端高温正在增加美国家庭的成本。极端高温不仅使许多美国人被送往急诊室和紧急护理诊所,还会扰乱粮食供应;破坏道路、桥梁、铁路和其他关键基础设施;并使美国家庭和企业的空调、电力和保险费用飙升。极端高温还导致停电和生产力损失,给我们的社区带来额外的成本和危害。• 在自然环境中,极端高温正在给我们的森林、海洋和其他生态系统带来压力。高温迫使物种迁徙,并造成前所未有的干旱和野火状况,尤其是在西部。在我们的海洋中,温度升高导致大量生物死亡、食物链断裂并损害敏感的珊瑚礁生态系统。• 当然,极端高温会影响我们的健康和福祉。极端高温可能导致中暑等健康紧急情况,并可能使心脏病和哮喘等慢性病恶化,包括降低室外空气质量。学校的高温影响我们的孩子,恶化学习环境,给学生运动员带来风险,取消课程,降低考试成绩。虽然气候变化继续导致气温升高,但每个社区和各级政府的领导人在保护我们的社区免受极端高温的危险影响方面都发挥着关键作用。联邦机构、美国国会、各州、部落、领地、地方政府、企业、宗教机构、非政府组织和其他组织必须共同努力,为我们的社区做好准备,保护它们免受极端高温的最严重影响。拜登-哈里斯政府一直努力应对气候危机、降低制冷成本、加强我们的基础设施,并投资于全美创新的制冷策略。联邦政府正在开发新的预测工具、调整我们的电网、改造和防寒保暖房屋、保护工人、创造缓解高温的绿色空间、建设社区能力等等。即便如此,全国各地的社区仍然面临风险——
无论气候如何,有些区域开始需要新的和翻新的建筑物中的电热与气体。虽然空气源热泵是一种全电动解决方案,但在使用大量室外空气时,极端温度可能会导致单位压缩机关闭或无法启动。保护压缩机并确保每个压缩机都可以在其操作信封内启动,离开室内线圈的空气必须在30°F或以上。因此,强烈建议可用于无占用和“单位冷启动”期的再循环阻尼器,以确保在室内线圈上存在30°F的空气,以便铅压缩机的初始化。循环阻尼器允许ASHP单元根据需要利用循环空气来实现启动铅压缩机所需的制冷压力。
提供3-5个母子对联的护理; 6-10名患者负荷责任。护理包括对母亲和婴儿的评估,后来分娩后,孕产妇评估和管理后,阴道和/或剖宫产后,孕产妇和婴儿药物交付和管理,有关母亲和/或婴儿健康的紧急情况的管理,以及与妇产科健康和妇产科医生,培育医生,培养科医生以及有关患者的往来以及有关患者的往来。
美国社区调查(ACS)是一项全国代表性的调查,其中包含有关美国人口特征的数据。该样品是从所有县和县等效物中选择的,样本量每年约为350万个住房。它是有关我们国家及其社区的详细人口和住房数据的最佳来源。我们使用个人和家庭水平的ACS数据来确定个人社会脆弱性组成部分的人口估计。美国住房调查(AHS)由住房和城市发展部(HUD)赞助,由美国人口普查局进行。调查是美国最全面的国家住房调查。使用来自2021 AHS的数据,我们创建了一个机器学习模型,该模型确定ACS中的家庭是否可能缺乏空调单元。其他数据也被用作建模过程中的预测指标。“建模家庭可能缺乏空调”部分,更详细地说明了数据和我们的机器学习方法。我们还使用人口估计计划(PEP)的辅助数据,该计划是普查局的计划,该计划生产并发布了美国和波多黎各的地理实体中居住时间的人口的估计。我们使用PEP的人口数据,按年龄组,种族和种族以及性别。一旦将加权估计值制成表格,小面积建模技术将用于创建CRE估计。由于PEP数据没有达到人口普查水平,因此CRE还使用了公法94-171摘要文件(PL94)和人口统计外壳特征(DHC)表(DHC)表格(DHC)表(DHC)表(DHC)表格,从2020年人口普查中产生基本估计。
致谢 ................................................................................................................ iii 摘要 ................................................................................................................................ iv 插图列表 ................................................................................................................ vii 第 1 章。介绍 ............................................................................................................. 1 1.1 热能存储 (TES) ...................................................................................... 2 1.2 相变材料 ...................................................................................................... 3 1.2.1 聚光太阳能发电厂 ............................................................................. 4 2.文献综述 ............................................................................................. 6 3.方法论 ............................................................................................................. 8 4.讨论 ............................................................................................................. 10 4.1 特性 ............................................................................................................. 10 4.2 结果和分析 ............................................................................................................. 10 5.结论................................................................................................................ 14 参考文献................................................................................................................ 15 个人简介.............................................................................................................. 18
基因组编辑技术:在小麦育种中的应用 Dorina BONEA 克拉约瓦大学,农学院,罗马尼亚多尔日县 Libertatii 街 19 号,电话/传真:+40 251 418 475,电子邮件:dorina.bonea@edu.ucv.ro,dbonea88@gmail.com 通讯作者:dbonea88@gmail.com 摘要 小麦为人类提供食物和营养支持;因此,小麦育种过程对于满足对具有更好农艺性状的品种日益增长的需求非常重要。随着时间的推移,育种者尝试了各种育种技术来改良所需性状,但这些技术已被证明是费时费力的。为了克服这些问题,科学家们开发了新的基因组编辑技术来加速和促进作物改良。本文所使用的方法重点是使用来自 EU-SAGE 平台的数据来处理、分析和提供有关小麦基因组编辑应用的最新信息。迄今为止(2024 年 1 月 20 日),该平台已注册了 43 项 CRISPR/Cas 技术申请、3 项 BE 技术和 1 项 TALEN 技术申请。美国在小麦基因组编辑技术应用方面位居第二,仅次于中国。通过这些应用获得的所有新小麦基因型都不含有外来 DNA,满足多个国家监管部门接受和批准的条件。这些包括对农民和消费者都很重要的特性,从而有助于全球加大对可持续农业发展的努力。关键词:碱基编辑、CRISPR/Cas 系统、谷物产量、品质、TALEN 介绍全球人口的持续增长需要增加粮食产量。由于气候变化和其他压力,确保足够的粮食生产相当困难。小麦(Triticum aestivum L.)是全球约 35% 人口的主食作物,全球产量的三分之二以上用于人类食品,五分之一用于动物饲料 [14]。2021 年小麦种植面积为 2.207 亿公顷,全球产量达到 7.708 亿吨 [12]。据 [41] 称,为确保粮食需求,到 2034 年,小麦产量必须增加 50%。随着时间的推移,植物育种者通过各种技术开发了新品种。最常用的方法是通过传统技术(杂交、选择等)育种,但这些技术成本高昂且需要很多年。生物技术(转基因、基因组编辑等)为实现
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
这项研究由伊拉克农业部植物保护局开展,旨在了解在小麦品种 IPA-99 中添加植物生长促进微生物 (PGPM)(巴西安氏螺旋菌、梭形赖氨酸芽孢杆菌、鹰嘴豆根瘤菌 CP-93、荧光假单胞菌、巨大芽孢杆菌和哈茨木霉)作为生物肥料与 25% 矿物肥料的效果。实验室研究包括分离和鉴定赖氨酸芽孢杆菌,该菌在体外与这些微生物之间没有拮抗作用。研究结果表明,T2处理在大多数性状中均表现优异,包括分蘖数(4.00 分蘖株 -1 )、穗长(10.50 cm)、每穗小穗数(19.50 小穗穗 -1 )、百粒重(3.50 g)和每穗粒数(35.43 粒穗 -1 )。该处理在籽粒氮含量(4.870%)、磷含量(1.943%)、钾含量(4.156%)和蛋白质含量(30.43%)等方面也表现出色。除生物产量特性(处理T5(62.30 g株 -1 )优于处理T1(23.10%))和收获指数(处理T2)外,T2优于所有处理。但是,它们与处理T2之间并无显著差异。关键词:小麦、梭形芽孢杆菌、生物肥料、PGPM、生长和产量性状 主要发现:梭形芽孢杆菌作为生物肥料处理,结合 25% 的推荐矿物肥料剂量,显著提高了小麦的生长和产量参数。此外,生物肥料还增加了小麦植株中 NPK 的利用率。