根据带电粒子在大型强子对撞机 (LHC) 等对撞机实验的探测器中留下的命中集合重建带电粒子的轨迹是一项具有挑战性的组合问题,并且计算量巨大。升级后的高亮度 LHC 的输出亮度增加了 10 倍,因此探测器环境将非常密集。传统技术重建粒子径迹所需的时间与径迹密度呈二次方以上关系。准确高效地将留在跟踪探测器中的命中集合分配给正确的粒子将是一个计算瓶颈,并促使人们研究可能的替代方法。本文提出了一种量子增强机器学习算法,该算法使用带有量子估计核的支持向量机 (SVM) 将一组三个命中(三元组)分类为属于或不属于同一条粒子径迹。然后将该算法的性能与完全经典的 SVM 进行比较。与经典算法相比,量子算法在探测器最内层方面的准确度有所提高,这对于轨迹重建的初始播种步骤至关重要。
摘要:我们重新评估了不对称暗物质(ADM)的生存能力,该可行性主要与标准模型费米子相关。在有效的相互作用框架中处理这种DM粒子与夸克/lept子的相互作用,我们使用大型强子对撞机(LHC)(LHC)和单声音搜索在大型电子positron(LEP)Collider上得出更新的约束。我们仔细地对这些实验中使用的检测器进行了建模,发现这些探测器具有显着影响。合成了ADM的对称部分的有效an灭的约束以及其他观察性约束,以产生全局图像。与以前的工作一致,我们发现在1-100 GEV范围内的ADM受到了强烈的限制,因此排除了其最佳动机质量范围。但是,我们发现嗜血型ADM仍允许10 GEV DM,包括Collider的边界,直接检测和出色的加热。我们预测,电子峰值碰撞(FCC-EE)的未来圆形对撞机将几乎通过一个数量级来提高对DM-Lepton相互作用的敏感性。
摘要:异常检测是一种至关重要的技术,用于探索大型强子对撞机(LHC)的标准模型(BSM)以外的新物理学的特征。LHC产生的大量碰撞需要复杂的深度学习技术。相似性学习是一种自我监督的机器学习,通过估计其与背景事件的相似性来检测异常信号。在本文中,我们通过相似性学习探讨了量子计算机对异常检测的潜力,利用量子计算的力量来增强已知的相似性学习方法。在嘈杂的中间量子量子(NISQ)设备的领域中,我们采用了混合经典的量词网络来搜索Di-Higgs生产渠道中的重标量共振。在没有量子噪声的情况下,混合网络表现出对已知相似性学习方法的改善。此外,我们采用了一种聚类算法来减少有限射击计数的测量噪声,从而导致混合网络性能提高了9%。我们的分析强调了量子算法在LHC数据分析中的适用性,其中随着耐断层量子计算机的出现,预计会进行改进。
来自有或没有错过横向动量(E MISS T)的各种搜索的广泛搜索结果,用于限制一个两higgs-doublet模型(2HDM),并介导了普通和暗物质和暗物质(2HDM+ a)之间的相互作用,并介导相互作用。在2015 - 2018年期间,在大型强子对撞机的Atlas检测器记录的质子 - 质子碰撞数据中,质子 - 普罗顿碰撞数据的分析最多可消耗139 fb 1。三个最敏感搜索的结果是统计上的。这些搜索目标特征是带有巨大的t和lepton腐烂的Z玻孔;大小姐T和Higgs玻色子腐烂到底部的夸克;并分别在最终的夸克和底部夸克的最终状态下产生带电的希格斯玻色子。的约束是针对2HDM+ a中几个常见和新基准的场景得出的。2024科学中国出版社。由Elsevier B.V.和Science China Press出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要 - 在最近推出的欧洲合作中,正在调查用于龙门和加速器(同步器)的内部离子治疗磁铁,在欧洲H2020 Hitri Plus和I.Fast计划的框架中,该合作已为超导磁铁提供了一些用于工作包的资金。超导磁体的设计和技术将用于离子治疗同步器,尤其是 - 尤其是龙门,作为430 MeV/nucleon离子(C-ION)的参考光束,具有10个离子/脉冲。磁体的直径约为60-90毫米,4至5 t峰值峰值,磁场的变化约为0.3 t/s,质量良好。本文将说明协作和技术计划的组织。各种超导体选项(LTS,MGB 2或HTS)和不同的磁铁形状,例如经典的Costheta或创新的Canted Costheta(CCT),具有弯曲的多功能(偶极子和四极管),在评估中,CCT为基线。这些研究应为现有设施的新超导龙门设计设计提供设计投入,并在更长的时间范围内,用于将新的强子治疗中心放置在东南欧(Seeiist Project)。
夸克-胶子部分子模型是大多数散射实验研究强子组成夸克和胶子结构的概念基础。部分子模型的依据来自微扰 QCD (pQCD),特别是 QCD 因式分解定理。基本的部分子图像——例如,参见 Feynman 在参考文献 [1] 中对它的原始表述——本质上是强子成分之间散射的半经典图像,其中特定的明确事件在特定的时空范围内以特定的顺序发生。事实上,退相干是通常所教的部分子模型的主要成分之一 [2]。本文旨在强调 QCD 因式分解推导的目标通常与通常被认为是量子信息论和量子力学解释领域的主题重叠 [3]。首先,以图片的形式回顾一下深非弹性散射 (DIS) 的部分子模型的基本描述,这很有用。它经历了图 1 所示的阶段。首先,电子和质子以高速在质心框架中相互接近(图 1-A)。质子被认为是一簇小成分。
关于 MPS 基础物理科学研究是 MPS 支持工作的核心主题。MPS 科学的核心领域(天文科学、化学、材料研究、数学科学和物理学)继续推进和转化知识,并支持下一代科学家的发展。MPS 资助的科学涵盖范围广泛:从研究过的最小物体和最短时间尺度到宇宙大小和年龄的距离和时间尺度。MPS 继续培养和支持跨学科科学项目,这些项目的范围和复杂性各不相同,从个人研究人员奖励到大型多用户设施。个人研究人员和小团队获得大多数奖项,但中心、研究所和设施都是 MPS 资助研究不可或缺的一部分。这种学科融合和组织研究人员的各种方式使 MPS 能够投资于引人注目的基础科学,这些科学将支撑和推动未来技术的进步,并帮助支持未来几十年强劲的美国经济。通过其中心和研究所计划,MPS 将继续支持前沿科学和从事从基础科学到转化科学的研究的下一代科学家的发展。MPS 中心和研究所涵盖范围广泛,从解决基础数学挑战到开发新材料。研究工具和基础设施是 MPS 将继续资助的关键重点。天文科学、化学、材料研究和物理学领域的中型研究基础设施对于这些学科的发展仍然至关重要。大型研究基础设施也至关重要,并为与国际组织、其他联邦机构和私人基金会建立伙伴关系提供了机会,阿塔卡马大型毫米/亚毫米阵列 (ALMA)、双子座天文台、大型强子对撞机 (LHC) 和国家高磁场实验室等设施就是明证。大型强子对撞机 (LHC) 的升级工程于 2020 年 4 月开始建设,旨在为 NSF 资助的 LHC 探测器做好粒子加速器高亮度运行的准备,而 Vera C. Rubin 天文台项目正在推进智利塞罗帕琼峰顶的物理基础设施以及最先进的数据管理系统和有史以来建造的最大数码相机。丹尼尔 K. 井上太阳望远镜 (DKIST) 位于夏威夷毛伊岛的哈莱阿卡拉山顶,预计于 2021 年底完工,有望成为世界上最强大的太阳天文台。DKIST 在 2020 财年实现了一个关键里程碑,首次看到太阳光芒,以有史以来最高的分辨率拍摄到太阳表面的壮观图像。自 1990 年以来,它探测到引力波
探索量子染色体动力学(QCD)相图在很大程度上依赖于在各种束能进行的重离子碰撞实验[1,2]。这些碰撞的复杂演化,跨越各个阶段,需要一个多阶段的理论框架。成功描述了许多测量值。对早期动力学,运输特性以及创建密集的核物质的状态(EOS)方程的最终最终HADRON的集体流量[3]。定向流(V 1),表示集体侧向运动,对早期演变和EOS特别敏感[3,4]。D V 1 / D Y |的非单调行为y = 0(已提出了范围内斑点的V 1(y)的斜率)表示辐射物质和夸克 - 杜伦等离子体(QGP)之间的一阶相变[3,5,6]。这是因为归因于相变的EOS的软化会导致膨胀过程中有向流的减少,因此导致D V 1 / D Y |最小值。 y = 0作为梁能量的函数[3]。但是,要强调V 1(y)对各种动态方面的敏感性至关重要。各种模型已被用于计算从AG到顶部RHIC能量的V 1(Y),从而产生了巨大变化的结果,但是,没有一个e ff offf eff offf of eff of e ff the efff of e ff the efff of eff of eff of eff of eff of the e ff [7,8]。在这项贡献中,我们使用(3 + 1) - 尺寸的混合框架与参数初始条件解释了V 1(y),并揭示其在有限化学电位上的浓密核物质的限制功率[9]。
欧洲核子研究中心大型强子对撞机 (LHC) 上的紧凑型μ子螺线管 (CMS) 探测器正在进行大规模升级,以应对高亮度 LHC (HL-LHC) 的严苛条件。CMS 中的新型定时探测器将测量最小电离粒子 (MIP),时间分辨率为每次命中 ∼ 40-50 ps,覆盖率高达 | η | =3。来自此 MIP 定时探测器 (MTD) 的精确时间信息将降低 HL-LHC 预计的高水平堆积的影响,并为 CMS 探测器带来新的独特功能。MTD 的端盖区域称为端盖定时层 (ETL),必须承受高通量,这促使人们使用具有快速电荷收集功能的薄型耐辐射硅传感器。因此,ETL 将配备硅低增益雪崩二极管 (LGAD),覆盖高辐射伪快速度区域 1.6 < | η | < 3.0。LGAD 将使用 ETROC 读出芯片读出,该芯片专为精确计时测量而设计。我们将介绍 ETL 探测器的广泛发展和进展,从传感器到读出电子设备、机械设计和系统测试计划。此外,我们将展示测试光束结果,这些结果证明了所需的时间分辨率。
据报道,在大型强子对撞机上使用𝑝𝑝碰撞数据的𝑊碰撞数据的电孔和光子与√𝑠= 13 tev的中心的观测。数据是通过ATLAS实验从2015年到2018年记录的,对应于140 fb -1的综合发光度。此过程通过矢量玻色子散射机制对四分尺仪玻色子耦合敏感,并对标准模型的电动型扇区进行了严格的测试。。多元技术用于区分electroweak的过程与不可还原背景过程。与6.3个标准偏差相比,Electroweak 𝑊𝛾𝑗𝑗过程的显着性远高于六个标准偏差。信托和差异横截面是在接近检测器接受度的基准相空间中测量的,这与Madgraph5+Pythia8和Sherpa的领先顺序标准模型预测合理一致。结果用于在有效的现场理论的背景下限制新的物理效应。