(li 2.5 y 0.5 Zr 0.5 Cl 6:1.40 ms cm -1,li 2.7 in 0.3 Zr 0.7 Cl 6:2.07 ms cm -1和li 2.25 Zr 0.75 Zr 0.75 Fe 0.25 Cl 6:1 ms
与表现出尖锐的兴奋性光致发光(PL)的单一组件二维(2D)金属卤化物钙钛矿(MHP)不同,混合的PB-SN 2D晶格中出现了宽带PL。已经提出了两个物理模型 - 自我捕获的激子和缺陷诱导的stokes变度 - 用于解释这种非常规现象。然而,这两个解释都提供了有限的合理化,而无需考虑强大的组成空间,因此,宽带PL的基本起源仍然难以捉摸。在此,我们建立了高通量自动化的实验工作流程,以系统地探索混合PB-SN 2D MHP中的宽带PL,采用PEA(苯乙酰胺)作为一种模型阳离子,可作为刚性有机隔离器起作用。从频谱上讲,随着早期结晶期间PB浓度的增加,宽带PL通过快速PEA 2 PBI 4相分离而进一步扩大。违反直觉,尽管缺陷密度很高,但具有高PB浓度的MHP表现出长时间的PL寿命。高光谱显微镜在这些膜中识别出实质性PEA 2 PBI 4相分离,假设结晶时通过相分离来建立电荷转移激子,是造成非凡行为的原因。在高PB组成下,这远远超过了缺陷引起的发射的杠杆,从而产生了独特的PL性质。我们的高通量方法使我们能够调和有争议的先验模型,这些模型描述了2D PB-SN MHP中宽带发射的起源,从而阐明了如何全面探索复杂材料系统的基本原理和功能。
摘要:金属卤化物钙钛矿 (MHP) 将非凡的光电特性与半导体同类产品所不具备的化学和机械特性相结合。例如,它们表现出与单晶砷化镓相当的光电特性,但形成能却接近于零。MHP 的晶格能较小,这意味着它们在接近有机材料的标准条件下经历了丰富多样的多态性。MHP 还表现出与最先进的电池电极一样高的离子传输率。金属卤化物钙钛矿最广泛的应用(例如光伏和固态照明)通常将低形成能、多态性和高离子传输视为应消除的麻烦。在这里,我们通过将这些特性与其他技术相关的半导体进行比较来全面了解这些特性,以强调这种特性组合对于半导体的独特性,并说明如何在新兴应用中利用这些特性。M
图 3:混合 Pb-Sn 钙钛矿薄膜中缺陷的化学分析。 (ad) 对具有不同 Pb/Sn 混合比的钙钛矿组合物进行的 Sn 3d 5/2 核心能级高分辨率 XPS 光谱。 棕色线是背景,红线与原始数据最吻合。 使用合适的拟合确定薄膜中 Sn 2+ 和 Sn 4+ 的相对丰度 (%)。 (e) 不同 Pb-Sn 混合比 (蓝色) 下 Sn 4+ /Sn 2+ 比率的图,以及从 PDS 测量中获得的 Urbach 能量 (红色)。 (f) 在保持薄膜厚度的同时,具有不同 Pb/Sn 成分的钙钛矿薄膜的积分 PL 计数变化。
Arthur Hagopian,Justine Touja,Nicolas Louvain,Lorenzo Stievano,Jean-SébastienFilhol等。卤化物离子在锂电极的杂交基涂料稳定中的重要性。ACS应用材料和界面,2022,14(8),pp.10319-10326。10.1021/acsami.1C22889。hal- 04262583
金属卤化物钙钛矿和钙钛矿相关的有机-无机杂化材料已成为一类重要的功能材料,具有广泛的应用,包括太阳能电池、发光二极管 (LED)、闪烁体等。通过控制有机和金属卤化物成分,这类杂化材料具有出色的结构可调性,这导致了分子水平上各种低维结构的发展,从准二维 (2D) 到层状二维、波纹二维、一维 (1D) 和零维 (0D) 结构。1 由于金属卤化物被有机成分隔离,这些材料中可以实现不同程度的电子带形成和结构扭曲,表现出与 3D 金属卤化物钙钛矿不同的独特光学和电子特性。2 例如,窄带发射
摘要在过去的十年中,基于金属卤化物钙钛矿(MHP)半导体的太阳能电池的性能飙升,现在与已建立的技术(如结晶硅)相媲美。然而,MHP半导体的最有希望的实施是在一个串联的太阳能电池中,该电池有望并确实提高了更高的功率转换效率。MHP的可调带隙使它们独特地放置在为一系列不同的窄带隙吸收器中提供这些高效串联太阳能电池。基于含有宽带的甲基铵(> 1.7 eV)吸收器顶部细胞的串联设备的效率超过30%,这是令人印象深刻的成就1。尽管如此,基于无甲基铵宽带隙吸收器顶部细胞的串联设备尚未达到30%的效率里程碑。与含有甲基铵的含有和较窄的带隙对应物相比,无甲基铵的宽带隙MHP的性能特别差,这说明了串联细胞技术的更大进步的显着范围。在这篇综述中,我们专注于无甲基铵的MHP。我们强调了这些材料所面临的独特挑战,包括当前限制其开路电压和效率远低于其热力学限制的能量损失途径。我们讨论了该材料系统开发的最新进展,它们在串联光伏技术方面的表现,并突出了似乎特别有前途的研究趋势。最后,我们建议未来的途径探索以加快宽带隙MHP的发展,这反过来又将加速基于这些材料的串联太阳能电池的部署。
作者的完整清单:洪,库塔克;首尔国立大学,材料科学与工程系,高级材料研究所;劳伦斯·伯克利国家实验室,化学科学系权,Ki Chang;首尔国立大学材料科学与工程系,高级材料研究所Choi,Kyoung;韩国基础科学研究所,国家研究设施和设备中心(NFEC)LE,Quyet; Duy Tan University,Duy Tan University,Duy Tan University,DU NANG 550000,越南; Kim,Seung Ju;首尔国立大学,材料科学与工程系,高级材料研究所,汉苏;首尔国立大学,材料科学与工程系,高级材料研究所SUH,Jun Min;首尔国立大学,材料科学与工程系,高级材料研究所Kim,Soo Young;韩国大学 - 卡罗来林的Anam校园,材料科学与工程萨特弗拉;劳伦斯·伯克利国家实验室(Jang,Ho Won);首尔国立大学,材料科学与工程系,高级材料研究所
17 Tailoring the spontaneous emission of nanocube perovskites 475 Hamid Pashaei-Adl, Setatira Gorji, and Guillermo Mun˜oz Matutano 17.1 Introduction 475 17.2 Perovskite nanocrystals: Synthesis, size and shape control, quantum confinement 476 17.3 Spontaneous emission by single perovskite nanocrystals 482 17.4工程自发发射速率:带有纤维腔模式和双曲线超材料的purcell效应487 17.5 perovskite SuperCrystals中相干自发发射494 17.6摘要497参考497