新能源汽车作为缓解城市环境问题的有效途径,已成为研究其在中国的发展现状和未来前景的焦点。针对不同城市新能源汽车产业发展的巨大差异,本研究以中国十个典型城市为研究对象,开发了一个新颖的多属性决策(MADM)框架来评估这些城市推广新能源汽车的前景。研究首先建立一套全面的指标体系,涵盖经济、政策支持、基础设施、技术创新和环境等关键维度,包含五种不同类型的评价信息。该体系融合了五种不同类型的评价信息:精确数、区间数、三角模糊数、犹豫模糊数和概率语言词集(PLTS),增强了框架处理不同数据类型的能力。然后,采用改进的熵(IEntropy)权重法确定评价指标的客观权重。然后将这些客观权重与VIKOR方法相结合,形成一种综合混合评估信息的结构化群体决策方法。基于模块化思维,综合混合评估信息对每个城市的新能源汽车发展前景进行评估和排序。敏感性分析和比较分析进一步证明了所提出的MADM框架的稳健性和可靠性。排序结果表明,上海和广州在新能源汽车推广方面处于领先地位,而哈尔滨和郑州等城市则落后。基于这些发现,本研究提出了有针对性的政策建议,以促进中国主要城市新能源汽车产业的可持续发展。
产品贸易在搬迁产量以及相关的空气污染影响方面发挥了越来越多的作用。虽然缺少通过贸易连锁店对大气污染重新分布的全面描述,这可能会阻碍有针对性的清洁空气合作。在这里,我们结合了来自物理,经济和流行病学的五个最新模型,以跟踪人为粒子事务(PM 2.5)2017年中国供应链沿着供应链的相关早期死亡率。我们的结果突出了从生产和消费角度都影响PM 2.5相关的死亡率的关键部门。从食品,轻型行业,设备,建筑和服务部门产生的基于消费的影响,是从生产的角度看待22 e 22倍的死亡,并且完全占国家总数的63%。从跨界的角度来看,中国PM 2.5相关的25.7%是由省际贸易引起的,其中最大的转移是从中部和北部地区到达了良好的东海岸省份。资本投资通过涉及大量的设备和建筑产品来占主导地位的跨界效应(56%),这些设备和建筑产品极大地依赖于具有特定资源的地区的产品出口。这种基于供应链的分析提供了全面的量化,并可能从健康风险的角度来为相关地区和部门之间更有效的联合控制努力提供了信息。©2023作者。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。
程序委员会 George Amvrosiadis,卡内基梅隆大学 Ali Anwar,明尼苏达大学 Oana Balmau,麦吉尔大学 John Bent,希捷 Janki Bhimani,佛罗里达国际大学 Angelos Bilas,克里特岛大学和 FORTH Ali R. Butt,弗吉尼亚理工大学 Andromachi Chatzieleftheriou,微软研究院 Young-ri Choi,蔚山国立科学技术研究所 Angela Demke Brown,多伦多大学 Peter Desnoyers,东北大学 Aishwarya Ganesan,伊利诺伊大学厄巴纳-香槟分校和 VMware Research Ashvin Goel,多伦多大学 Haryadi Gunawi,芝加哥大学 Dean Hildebrand,谷歌 Yu Hua,华中科技大学 Jian Huang,伊利诺伊大学厄巴纳-香槟分校 Jooyoung Hwang,三星电子 Jinkyu Jeong,延世大学 Sudarsun Kannan,罗格斯大学 Sanidhya Kashyap,洛桑联邦理工学院 Youngjin Kwon,韩国科学技术研究院技术(KAIST) Patrick PC Lee,香港中文大学(CUHK) Sungjin Lee,大邱庆北科学技术大学(DGIST) Cheng Li,中国科学技术大学 Youyou Lu,清华大学 Peter Macko,MongoDB Changwoo Min,Igalia Beomseok Nam,成均馆大学 Sam H. Noh,弗吉尼亚理工大学 Raju Rangaswami,佛罗里达国际大学 Jiri Schindler,IonQ Phil Shilane,戴尔科技集团 Keith A. Smith,MongoDB Vasily Tarasov,IBM 研究部 Eno Thereska,Alcion, Inc. Carl Waldspurger,Carl Waldspurger 咨询公司 Wen Xia,哈尔滨工业大学 Gala Yadgar,以色列理工学院 Ming-Chang Yang,香港中文大学(CUHK)
微生物生物传感器可以是用于毒性监测的经典方法的绝佳替代方法,这些方法耗时且灵敏。但是,细菌通常通过生物膜形成连接到电极,从而导致问题由于缺乏统一性或较长的装置生产时间而引起的问题。合适的固定技术可以克服这些挑战。仍然,它们的响应可能比基于生物纤维的电极更慢,因为在生物膜期间细菌逐渐适应电子转移。在这项研究中,我们提出了一种可控且可再现的方法来制造细菌模化的电极。该方法由使用纤维素基质的固定步骤组成,然后在存在铁酰胺和葡萄糖的情况下进行电极极化。我们的过程简短,可重现,并使我们获得具有高电流响应的现成电极。固定的电化学活性细菌的出色保存期长达一年。在第一个月最初的50%活动损失后,在接下来的11个月中未观察到进一步下降。我们实施了细菌模化的电极,以使用甲醛(3%)制造一个用于毒性监测的侧向流平台。其添加导致有毒输入后约20分钟的电流减少59%。此处介绍的方法具有发展高灵敏度,易于产生和长长的货架生物生物细菌毒性探测器的能力。©2020作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
微生物电气合成(MES)是一种有前途的碳利用技术,但是低价值的产品(即乙酸或甲烷)和高电力需求需求阻碍其工业采用。在这项研究中,低欧姆耐药性为15.7 m u m 2的电气有效的MES细胞在喂养批处理模式下以固定态进行了galva,这是高CO 2和H 2可用性的交替时期。这促进了乙酸和乙醇的产生,最终触发了选择性(碳为基础的78%)丁酸通过链伸长产生。以1.0或1.5 mA CM 2的施加电流为14.5 g m 2 d 1,为megasphaera sp。钥匙链拉长播放器。与含有富集群落的天主解的第二个细胞接种,导致丁酸产生的速率与以前的细胞相同,但滞后相降低了82%。此外,在阴极室中打断CO 2喂食并设置一个1.7 E 1.8 ATM的常数pH 2,触发了pH低于4.8的pH,触发了溶解剂丁醇的产生。有效的细胞设计导致平均细胞电压为2.6 e 2.8 V,尽管库仑(Coulombic efiencies)限于O 2和H 2的交叉,但产生了34.6 kWh el Kg 1的电能需求,即34.6 kWh el kg 1的丁酸1。总而言之,这项研究揭示了从CO 2获得能量良好的丁酸产生的最佳工作条件,并提出了一种将其进一步升级为有价值的丁醇的策略。©2023作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
中国空间技术研究院 (中国) 643 26,135 30 空客 (欧洲) 611 13,954 67 波音 (美国) 430 14,624 88 Energiya (俄罗斯) 430 7,401 37 三菱电机 279 89,137 20 IHI 201 13,657 28 泰雷兹 (欧洲) 153 6,495 54 三菱重工 131 27,823 16 霍尼韦尔 (美国) 117 19,431 7 雷神 (美国) 105 5,383 3 斯奈克玛 (欧洲) 102 4,363 6 太空系统/劳拉 (美国) 58 168 12 Viasat (美国) 1 685 0 蓝色起源 (美国) 12 19 1 SpaceX(美国) 1 10 9 Rocket Lab(美国) 5 5 0 北京零度空间科技公司(中国) 2 24 0 Mojave Aerospace Ventures(美国) 2 2 0 PLD space(西班牙) 0 0 0 Reaction Engines(英国) 6 13 4 Relativity Space(美国) 0 2 0 Skyrora(英国) 0 0 0 Oneweb(美国) 11 29 0 Blacksky(美国) 0 0 0 Capella Space(美国) 0 0 0 Hawkeye360(美国) 0 6 0 Iceye(芬兰) 0 1 0 OHB System(德国) 1 8 20 Planet(美国) 5 27 2 Spire Global(美国) 6 22 0 ispace(日本) 7 13 1 Planetary Resources(美国) 4 4 1 Astroscale 12 12 0 D-Orbit (意大利) 4 4 0 NASA (美国) 91 1,924 959 日本宇宙航空研究开发机构 119 500 473 国防科技大学 (中国) 69 6,274 280 哈尔滨工业大学 (中国) 338 25,237 274 加州理工学院 (美国) 19 2,648 314 韩国航空宇宙研究院 (韩国) 436 2,739 72
除草剂clopyralid的污染物(3,6-二氯-2-吡啶 - 羧酸,CLP)对生态系统构成了潜在的威胁。然而,普遍缺乏研究CLP对生物衍生过程扰动的研究,其生物反应机制尚不清楚。在此,对CLP的长期暴露进行了系统的研究,以探索其对硝化性能和动态微生物反应的影响。结果表明,CLP的低浓度(<15 mg/ L)最初引起严重的亚硝酸盐积累,而在长期适应后,CLP的浓度较高(35 E 60 mg/ L)没有进一步的影响。这项机械研究表明,CLP减少了亚硝酸盐还原酶(NIR)活性,并抑制了代谢活性(碳代谢和氮代谢),从而导致氧化应激和膜损伤,从而导致亚硝酸盐的积累。但是,经过80天以上的适应,几乎没有在60 mg/L Clp的情况下发现亚硝酸盐积累。提出,细胞外聚合物物质(EPS)的分泌在15 mg/l Clp时从75.03 mg/g VSS增加到60 mg/l Clp的109.97 mg/g VSS,从而增强了微生物细胞的保护和改善的NIR活性和改善的NIR活性和代谢活性。此外,Mi-Crobial社区的生物多样性和丰富性经历了U形过程。最初硝化和代谢相关的微生物的相对丰度最初降低,然后随着与EPS和N-酰基 - 糖烯内酯分泌有关的微生物的富集而回收。©2021作者。这些微生物保护了微生物免受有毒物质的影响,并调节了它们之间的相互作用。这项研究揭示了成功暴露于CLP后的硝化生物反应机制,并为分析和治疗含除草剂的废水提供了适当的指导。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
名誉主席 Tomaso Poggio,麻省理工学院,美国 总主席 Danilo Comminiello,罗马第一大学,意大利 项目主席 Francesco Carlo Morabito,地中海大学,意大利 Marley Vellasco,里约天主教大学,巴西 Aurelio Uncini,罗马第一大学,意大利 技术项目主席 Michele Scarpiniti,罗马第一大学,意大利 Barbara Hammer,比勒费尔德大学,德国 Badong Chen,西安交通大学,中国 全体会议主席 Marco Gori,锡耶纳大学,意大利 Justin Dauwels,代尔夫特理工大学,荷兰 教程主席 Anthony Kuh,夏威夷马诺阿大学,美国 Zhi (Gerry) Tian,乔治梅森大学,美国 特别会议主席 Toshihisa Tanaka,东京农业大学Tech。,Sapienza University,Italy Clive Cheong,皇家Holloway Univ,英国伦敦,埃里萨·贝尔西·萨皮恩·斯卡达帕内Rizio Silvestri,意大利萨皮恩扎大学的行业计划主席G. Kumar Venayagamoorthy,Clemson Univ。意大利奖院主席JoséPrincipeAlessandro Sperduti,意大利帕多瓦大学出版物Richard Duro,大学西班牙拉科鲁尼亚 公共事务主席 秦凯 斯威本科技大学 Valerio Guarrasi 意大利生物医学大学 财务主席 Chrisina Jayne 英国提斯赛德大学
程序委员会:Barbar J. Akle,黎巴嫩美国大学(黎巴嫩);Yoseph Bar-Cohen,喷气推进实验室(美国);Ray H. Baughman,德克萨斯大学达拉斯分校(美国);Holger Böse,弗劳恩霍夫硅酸盐研究所 ISC(德国);Eric Cattan,上法兰西理工大学(法国);Hyouk Ryeol Choi,成均馆大学(韩国);Marco Fontana,圣安娜高等学校(意大利);Edwin W. H. Jager,林雪平大学(瑞典);Giedrius Janušas,考纳斯理工大学(立陶宛);Martin Kaltenbrunner,约翰内斯开普勒林茨大学(奥地利); Christoph Keplinger,科罗拉多大学博尔德分校(美国);Kwang Jin Kim,内华达大学拉斯维加斯分校(美国);Soo Jin Adrian Koh,马克斯普朗克智能系统研究所(德国);Gabor M. Kovacs,CTsystems AG(瑞士);Maarja Kruusmaa,塔林理工大学(爱沙尼亚);Jinsong Leng,哈尔滨工业大学(中国);李铁锋,浙江大学(中国);Jürgen Maas,柏林工业大学(德国);Il-Kwon Oh,韩国科学技术研究院(韩国);Toribio F. Otero,卡塔赫纳理工大学(西班牙);裴齐兵,加州大学洛杉矶分校(美国);Aaron D. Price,西部大学(加拿大); Jonathan M. Rossiter,布里斯托大学(英国);Stefan S. Seelecke,萨尔大学(德国);Jun Shintake,电气通信大学(日本);Anuvat Sirivat,朱拉隆功大学(泰国);Anne Ladegaard Skov,理工大学 o
1。军事科学学院,人民解放军(PLA)2。中国航空发动机公司3。空军指挥学院,PLA 4。空军通讯NCO Academy,PLA 5。空军预警学院,PLA 6。空军工程大学,PLA 7。空军设备学院,PLA 8。空军飞行学院Shijiazhuang,PLA 9。空军哈尔滨飞行学院10.空军物流大学,PLA11。空军医科大学,PLA 12。空军研究所,PLA 13。空军西安飞行学院,PLA 14。装甲部队工程学院,PLA 15。陆军装甲部队学院,PLA 16。陆军炮兵与防空学院,PLA 17。陆军边境与沿海防御学院,PLA18。陆军航空学院,PLA19。PLA陆军工程大学20。陆军步兵学院21。陆军医科大学,PLA 22。陆军军事运输学院,PLA 23。陆军研究所,PLA 24。陆军特种作战学院,PLA 25。陆军特种作战学院,PLA 26。中国航空工业公司(AVIC)27。AVIC北京航空制造技术研究所(又称A.AVIC Institute 625)28。Bei Hang University 29。 北京电子科学技术研究所30。 北京技术研究所31。 北京航空与宇航学大学BUAA 32。Bei Hang University 29。北京电子科学技术研究所30。北京技术研究所31。北京航空与宇航学大学BUAA 32。北京化学技术大学33。北京邮政与电信大学34。北京大学BEIDA PKU35。Casic China Changfeng Mechanics and Electronics Technology Academy 36。中国中央大学,中国37。 长春科技大学38。 中国空气动力学研发中心39。 中国航空航天科学与工业公司(CASIC)中国中央大学,中国37。长春科技大学38。中国空气动力学研发中心39。中国航空航天科学与工业公司(CASIC)
