在本文中,我们研究了在漏极侧加入 HfO 2 作为电介质并在源极侧加入硅堆栈对双栅极隧道 FET(DG-TFET)电气性能的影响。为此,我们将传统 TFET 结构与其他四种结构进行了比较,这四种结构的栅极电介质材料要么是同质的,要么是异质的,而漏极侧的绝缘体要么是 SiO 2 要么是 HfO 2 。此外,还提出了一种具有硅源堆栈的结构,并将器件的性能系数与其他对应结构进行了比较。我们的模拟结果表明,漏极侧存在 HfO 2 绝缘体会降低双极传导,而异质栅极电介质则会增强驱动电流和跨导。但是,与传统 TFET 相比,HfO 2 会略微降低源极-栅极和漏极-栅极电容。此外,在所研究的 50 nm 沟道长度 TFET 中,硅源极堆栈与异质栅极电介质和漏极侧的 HfO 2 绝缘体的结合,可实现更高的 I ON /I OFF 比、更低的亚阈值斜率 (S) 和更低的双极传导。
摘要 — 大脑微运动是导致植入式神经接口失败的主要原因。有两种方法可以有效减少大脑微运动和组织损伤:(i)缩小植入式装置占地面积和(ii)选择柔性材料作为装置基板。为了满足这些要求,在本文中,我们使用 COMSOL Multiphysics 中的有限元法执行了两组建模。首先,我们对不同尺寸的不同材料(从硬材料(例如硅)到非常软的材料(例如 PDMS))的性能进行建模,以找到微探针的最佳尺寸和材料。对于装置尺寸优化,主要自由度是厚度,而最小柄宽度和长度分别取决于记录位置和目标记录点。基于不同基板对具有不同厚度(50 - 200 μm)和固定柄宽度(100 µm)的装置进行建模,我们表明,基于聚酰亚胺的微探针的安全系数为 5 到 15,最大冯·米塞斯应力为 248-770 MPa。此外,模拟表明,厚度为 50 μm 的聚酰亚胺基微探针,其安全系数为 5,应力为 248 MPa,在尺寸和材料方面提供了最佳解决方案。其次,为了分析设备形状因子,我们根据获得的最佳设计对不同的布局进行建模,发现最佳布局的冯·米塞斯应力为 134.123 MPa,用途广泛,适合用作微探针,尤其是用于缓解脑微运动的影响。关键词——脑植入装置、脑微运动、设备建模、小型化、机械灵活性、形状因子。
许多新兴的生物传感应用 [1]、[2] 以及增强现实应用的人机界面 [3] 都依赖于巨磁电阻 (GMR) 传感器,因为它们具有良好的灵敏度和低 1/f 噪声。作为替代方案,隧道磁电阻 (TMR) 传感器由于其更高的磁阻 (MR) 比可以提供比 GMR 传感器更好的灵敏度。然而,如此高的 MR 比对接口电子设备提出了严格的要求,因为它们的基极电阻变化很大。这种变化会导致放大器输入端出现较大的电压偏移,从而减小放大器的动态范围,在最坏的情况下,如果不进行补偿,会导致前端饱和。消除放大器输入直流偏移的一个可能解决方案是使用斩波电容耦合仪表放大器 (CCIA) 与直流伺服环路 (DSL) [4],参见图 1a。然而,这种方法需要在放大器的输入参考电压噪声和 DSL 可以补偿的最大偏移之间进行权衡。更具体地说,可以通过增加 C DSL 来补偿更高的输入偏移,而这又会增加 CCIA 的输入参考电压噪声 [5]。作为一种替代方案,图 1b 显示了使用跨阻放大器 (TIA) 处理产生的电流 [2] 的可能性。在这种方案中,通常需要辅助电阻
摘要 — 肌磁图 (MMG) 是测量人体骨骼肌中由电活动产生的磁信号的方法。然而,目前开发的用于检测如此微小磁场的技术体积庞大、成本高昂,并且需要在温控环境下工作。开发一种小型化、低成本和室温磁传感器为加强这一研究领域提供了一条途径。在此,我们介绍了一种用于室温 MMG 应用的集成隧道磁阻 (TMR) 阵列。TMR 传感器采用低噪声模拟前端电路开发,以在高信噪比下检测未进行和进行平均的 MMG 信号。MMG 是通过使用肌电图 (EMG) 信号作为触发器对信号进行平均来实现的。观察到的幅度为 200 pT 和 30 pT,对应于手紧张和放松的周期,这与基于有限元法 (FEM) 的肌肉模拟一致,该法考虑了从观察点到磁场源的距离的影响。
背景:了解复杂的心脏解剖结构对于经皮左心房附属(LAA)闭合至关重要。传统的多切片计算机断层扫描(MSCT)和经食管超声心动图(TEE)现在得到了高级3D打印和虚拟现实(VR)技术的支持,用于体积数据集的三维可视化。这项研究旨在研究其对LAA关闭程序的附加值。方法:使用MSCT和TEE评估了计划进行介入LAA闭合的十名患者。根据MSCT数据制造了患者特异性3D打印和VR模型。随后,十位心脏病学家以相对评估的LAA解剖结构及其与所有四种成像方式相关的围绕结构相关的程序,并将其程序实用程序评为5点李克特量表问卷(从1 =非常同意5 =强烈不同意)。结果:设备尺寸在MSCT中的额定值最高(MSCT:1.9±0.8; TEE:2.6±0.9; 3D打印:2.5±1.0; VR:2.5±1.1; P <0.01);与MSCT相比,Tee,VR和3D打印在窝卵形的可视化中表现出色(MSCT:3.3±1.4; TEE:2.2±1.3; 3D打印:2.2±1.4; VR:VR:1.9±1.3; All P <0.01)。VR和3D打印技术的主要强度是高度的深度感知(VR:1.6±0.5; 3D打印:1.8±0.4; Tee:2.9±0.7; MSCT:2.6±0.8; P <0.01)。在TEE上的可视化外膜外结构的额定值少于MSCT(TEE:2.6±0.9; MSCT:1.9±0.8,p <0.01)。然而,在本研究中,3D打印和VR无法很好地可视化。这可能有助于更好地理解解剖结构。结论:VR或3D打印中的真实3D可视化在评估LAA的额外值中为经皮关闭计划。尤其是,对深度的优势感知被视为3D可视化的强度。需要临床研究来评估使用使用VR的患者特异性解剖结构的高级多模式成像是否可以转化为改进的程序结果。
引用:Alireza Heidari。LLPS阳性DNA/RNA设计的生成变压器模型。医学和临床病例报告杂志1(7)。https://doi.org/10.61615/jmccr/2024/aug027140810
范华的工作部分由国家自然科学基金项目(61771111)、四川省科技重大项目(19ZDYF2863)、中国博士后科学基金项目(2017M612940 和 2019T120834)以及四川省博士后科学基金专项资助。冯全元的工作部分由国家自然科学基金项目(61531016)以及四川省科技重大项目(2018GZ0139、2018ZDZX0148 和 2018GZDZX0001)资助。Hadi Heidari 的工作由英国格拉斯哥大学 2017/18 年度格拉斯哥知识交流基金资助
■ 基于光子晶体平台的全光半减器和全减器的最新进展 Fariborz Parandin、Saeed Olyaee、Farsad Heidari、Mohammad Soroosh、Ali Farmani、Hamed Saghaei、Rouhollah Karimzadeh、Mohammad Javad Maleki、Asghar Askarian、Zahra Rahimi、Arefe Ehyaee 《光通信杂志》,第 0314 卷,第 1-30 页,2024 年
性别差异的研究是神经科学中最具挑战性和最有争议的话题之一。在过去的几十年中,研究对性别差异的研究的重要性常常被低估了,但是近年来,我们对性别对大脑结构,功能和化学影响的影响的了解大大增强。我们目睹了有关性别差异的发现越来越多,并且它们对人类疾病的风险和过程的重要性(Heidari等,2017; Clayton,2018)。分析技术的进步以及更广泛地使用其使用的机会,授予了更详细地研究大脑并评估男性和女性之间更加精确差异的机会。然而,尽管研究了数十年,但仅部分理解了大脑功能的性别差异。
I. Amir Valizadeh 1,医学博士,thisisamirv@gmail.com,ORCID II。 Mana Moassefi 1,医学博士,Moassefi@gmail.com,ORCID III。 Amin Nakhostin-Ansari 2,医学博士,a-nansari@alumnus.tums.ac.ir,ORCID IV。 Iman Menbari Oskoie 2,医学博士,imanmenbary@gmail.com,ORCID V. Soheil Heidari Some'eh 2,3,医学博士,S-heidari@student.tums.ac.ir,ORCID VI。 Faezeh Aghajani 2,3,医学博士,faezehaghajani.fa@gmail.com,ORCID VII。 Mehrnush Torbati 4,医学博士,M.storbati@yahoo.com,ORCID VIII。 Zahra Maleki Ghorbani 2,3,医学博士,Malmandi25@gmail.com,ORCID IX。 Reyhaneh Aghajani 2,3,医学博士,Reyhaneh.aghajani1376@gmail.com,ORCID X. Seyed Hossein Hosseini Asl 2,3,医学博士,hoseinihocein@gmail.com,ORCID XI。 Alireza Mirzamohammadi 2,3,医学博士,alireza.mirzamohamadi@shahed.ac.ir,ORCID XII。 Mohammad Ghafouri 2,医学博士,mohammadghafouri1372@gmail.com,ORCID XIII。 Shahriar Faghani 5,6,医学博士,Shahriar.faghani@gmail.com,ORCID XIV。 Amir Hossein Memari 2 ,医学博士,Mehranamir@yahoo.com ,ORCID