本公司于 1995 年 12 月 22 日根据《1956 年公司法》成立为一家上市公司,名称为“GR Agarwal Builders and Developers Limited”。1996 年 1 月 3 日,本公司由拉贾斯坦邦注册局颁发了营业执照,同年,本公司收购了合伙公司 M/s Gumani Ram Agarwal 的业务。2007 年 8 月 24 日,本公司股东通过决议,本公司名称更改为“GR Infraprojects Limited”,因为本公司管理层认为,新名称更能反映本公司所开展的业务。2007 年 8 月 31 日,拉贾斯坦邦注册局根据名称变更颁发了新的公司注册执照。有关本公司名称和注册办事处变更的更多详情,请参阅第 203 页的“历史和某些公司事务”。
摘要:本文比较了美国和欧洲电力市场的发展,并在过渡到低碳电力系统的背景下评估了其设计的适用性和未来挑战。分析的重点是招标格式(有组织的电力市场允许参与者表达其运营限制的方式)和定价方案(代理商如何从市场价格中恢复其短期成本)。在过去十年中,全球范围内已经体验到的动力混合物的根本演变以及即将到来的较大的能源,其可再生能源的份额更高,并且在存储资源方面的作用更加突出,从而揭示了当前市场设计中的限制。我们对大西洋两岸的最佳实践进行了深入而全面的审查,并从中学习,我们提出建议以发展这些市场设计元素。
可编程光子集成电路正成为量子信息处理和人工神经网络等应用的一个有吸引力的平台。然而,由于商业代工厂缺乏低功耗和低损耗的移相器,目前的可编程电路在可扩展性方面受到限制。在这里,我们在硅光子代工平台 (IMEC 的 iSiPP50G) 上展示了一种带有低功耗光子微机电系统 (MEMS) 驱动的紧凑型移相器。该设备在 1550 nm 处实现 (2.9 π ± π) 相移,插入损耗为 (0.33 + 0.15 − 0.10) dB,V π 为 (10.7 + 2.2 − 1.4) V,L π 为 (17.2 + 8.8 − 4.3) µ m。我们还测量了空气中的 1.03MHz 的驱动带宽 f − 3 dB。我们相信,我们在硅光子代工厂兼容技术中实现的低损耗和低功耗光子 MEMS 移相器的演示消除了可编程光子集成电路规模化的主要障碍。© 2021 美国光学学会
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?
摘要描述:石油和天然气应用,特别是钻井应用的要求不断增加。新的钻井技术需要能够满足机械、磁性和腐蚀性能方面的挑战性要求的材料。新的油气田在海底更深的深度进行勘探,为了进行这些勘探,应该开发新材料。这些新材料必须表现出高强度,屈服强度高于 1035 MPa (150 ksi),并且在钻井液高温和盐度结合的恶劣环境中具有出色的腐蚀性能。德国 Edelstahlwerke 开发了一种满足钻井应用苛刻要求的新材料解决方案。新开发的无磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢采用感应炉中的传统炼钢工艺、随后的电渣重熔和热加工生产。这种新型 FeCrMnMo-HIS 具有强度高、韧性好、耐腐蚀性能强等特点。固溶退火后,该材料完全为奥氏体,伸长率高于 60%,屈服强度和极限强度分别为 600 MPa (87 ksi) 和 980 MPa (142 ksi),冲击能量高,高于 350 J (> 258 ft-lbs)。FeCrMnMo-HIS 钢未经敏化处理,未发生晶间腐蚀,在室温下氯化铁溶液中测试 72 小时后未失重,且具有较高的点蚀潜力。临界点蚀温度为 35 °C (95 °F)。此外,HI-Steel 在 108 °C (226 °F) 的饱和 NaCl 中具有抗应力腐蚀开裂性。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。1.创新是什么?开发了一种新型非磁性高间隙 (FeCrMnMo(C+N)) 奥氏体不锈钢。出色的机械性能、氯化物环境中的良好耐腐蚀性以及经济高效的生产使新型高间隙 (C+N) 非磁性奥氏体不锈钢成为石油和天然气应用非常有前途的合金。2.这项创新是如何实现的?%)。该钢采用传统炼钢工艺生产。这项工作于 2017 年开始,目前仍在进行中。开发了一种新型非磁性高间隙(FeCrMnMo(C+N))奥氏体不锈钢,其名义成分为 Fe-18Cr-18Mn-2Mo-1(C+N)(wt.它在固溶退火条件下具有良好的伸长率、强度和冲击能量组合。抗点蚀当量数 (PREN) 高于 35。高间隙(HI)钢在不同环境下表现出良好的抗应力腐蚀开裂和点蚀性能。新型高间隙 FeCrMnMo 奥氏体不锈钢是一种非常有前途的牌号,适用于石油和天然气工业,因为其机械强度高于 1000 MPa(145 Ksi)且具有良好的腐蚀性能。3.描述腐蚀问题或技术差距激发了创新的发展。创新如何改进现有的方法/技术来解决腐蚀问题或提供新的解决方案来弥补技术差距?
引用Verson的引用:Gorri,JM,Ramirez,J,Ortíz,A,Martínez-Murcia,FJ,Segovia,F,Suckling,J,Leming,M,Zhang,Y,Álvarez-Sánchez,Jr RJ,A,Fernández-Jover和,GómezVilda,P,Graña,M,Merrera,F,Iglesias,R,Lekova,A,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,J,La Paz pinninghoff,MA,MA,MA,Rincón,M,Rincón,Rincón Z,JM 2020,“自然和人工计算中的人工互动:数据科学的进步,趋势和应用程序”,《神经典型》,第1卷。 410,页237-270。 https://doi.org/10.1016/j.neucom.2020.05.078
背景:3 − 7% 的非小细胞肺癌 (NSCLC) 患者会发生间变性淋巴瘤激酶 (ALK) 基因重排。检测这种改变至关重要,因为 ALK 阳性的 NSCLC 患者可从 ALK 抑制剂中受益,与传统化疗相比,ALK 抑制剂可改善患者的生活质量和总体生存率 (OS)。内容:在常规临床实践中,使用组织活检检测 ALK 重排。然而,由于手术并发症或难以接触癌症病变,NSCLC 患者的肿瘤组织可用性受到影响。此外,DNA 质量和异质性可能会影响肿瘤活检检测。这些限制可以通过液体活检来克服,液体活检是指用于肿瘤分子分析的非侵入性方法。在本文中,我们回顾了目前可用于 NSCLC 患者的非侵入性 ALK 检测技术,该技术基于对循环肿瘤 DNA (ctDNA)、循环肿瘤 RNA (ctRNA)、循环肿瘤细胞 (CTC)、肿瘤诱导血小板 (TEP) 和细胞外囊泡 (EV)(如外泌体)的分析。总结和展望:非侵入性肿瘤分子分析对于改善肿瘤中存在涉及 ALK 基因位点易位的 NSCLC 患者的预后和生活质量至关重要。
通过人工智能技术预测学业成绩 Omar D. Castrillón、William Sarache 和 Santiago Ruiz-Herrera 哥伦比亚国立大学 - 马尼萨莱斯校区,工程与建筑学院,工业工程系,创新与技术发展组,Q 区拉努比亚校区,马尼萨莱斯,170001 - 哥伦比亚。 (电子邮件:odcastrillong@unal.edu.co;wasarachec@unal.edu.co;sruizhe@unal.edu.co) 五月收到。 9,2019; 2019 年 7 月 8 日接受;最终版本 2019 年 8 月 12 日,2020 年 2 月发布 摘要 本文的目的是利用人工智能技术(分类器)根据各种影响因素预测高等教育学生的学业成绩。尽管对这些因素的研究已从定量和定性方法进行了广泛的分析,但仍然提供了使用人工智能提供的工具进行研究的机会,特别是在预测学业成绩方面。通过定义的因素(教育、家庭、社会经济、习惯和风俗等),设计了一种方法,可以训练一个系统,该系统能够预先将新生分类到五个预定的学业成绩类别之一中。这种分类可以让教育机构提前识别出可能存在学业成绩问题的学生。由此,可以部署立即的支持和缓解行动。该方法被应用于哥伦比亚一所公立大学的学生样本,成功率达到 91.7%。关键词:学业成绩;人工智能;分类器;成功;使用人工智能技术预测学业成绩摘要本文的目的是通过应用人工智能技术(分类器)来预测高等教育学生的学业成绩,考虑几个影响因素。尽管这些因素已从定量和定性方法进行了广泛的分析,但它们仍然代表了使用人工智能工具的研究机会,特别是在学业成绩预测方面。通过定义影响因素(教育、家庭背景、社会经济、习惯和风俗等),设计了一种方法,以训练一个系统,该系统能够预先将新生分类为五个学业成绩类别之一。这种分类使教育机构能够尽早发现可能存在学业成绩问题的学生。根据这些了解,该机构可以立即采取缓解措施。该方法被应用于哥伦比亚一所公立大学的学生样本,成功率达到 91.7%。关键字:学业成绩;人工智能;分类器;成功;预测
知识 问责制 联系自我反省教育行动理解交流倾听学习访问质量创新成功独创性智力好奇心挑战创造成就联系自我反省教育行动理解交流倾听学习访问质量创新成功独创性智力好奇心挑战知识问责制 联系理解交流倾听学习访问质量创新成功独创性自我反省教育行动理解智力知识问责制 联系自我反省教育行动理解交流好奇心挑战创造成就联系自我反省好奇心挑战创造成就联系自我反省知识问责制 联系自我反省教育行动理解交流倾听学习访问质量创新成功独创性智力好奇心挑战教育创新成功独创性智力好奇心挑战创造成就知识问责制 联系自我反省教育行动理解交流倾听学习访问质量创新成功独创性智力好奇心挑战创造成就联系自我反省教育行动理解交流倾听学习行动理解交流倾听学习访问质量创新成功独创性智力好奇心挑战创造成就 学习 访问