Jordi Cortadella 是加泰罗尼亚理工大学(西班牙巴塞罗那)计算机科学系的全职教授。他是 IEEE 会员和欧洲科学院院士。他于 1987 年在同一所大学获得计算机科学博士学位。1988 年,他是加州大学伯克利分校的访问学者。他还曾于 1998 年夏季和 2001 年夏季担任英特尔公司(美国希尔斯伯勒)的客座教授,并于 2000 年夏季担任 Theseus Logic(美国桑尼维尔)的客座教授。他于 2007 年共同创立了 Elastix 公司,该公司生产用于异步设计的 EDA 工具。他的主要研究兴趣包括 VLSI 系统的形式化方法和计算机辅助设计,特别侧重于异步电路。他在技术期刊和会议上共同撰写了 200 多篇论文。他曾在电子设计自动化和并发领域众多会议的技术程序委员会任职。他是 ASYNC 2010 和 ICATPN 2004 的程序联合主席。他现在是 IEEE 集成电路和系统计算机辅助设计汇刊的副主编。他的研究对科学界产生了重大影响。例如,他设计了一个用于快速加法和比较的算术电路,并于 1992 年发表。该电路引起了多家公司的注意,并被引入到不同微处理器的某些组件中。他在并发系统综合和分析领域的贡献也产生了切实的影响。他被引用最多的论文之一提出了使用符号方法分析 Petri 网的技术。可能最相关的工作是在异步电路领域。自 90 年代初以来,他一直与一个国际团队密切合作研究这个课题。该领域的活动可以归类为基础研究,但所取得的成果引起了许多工业和学术机构的兴趣。该研究最显著的成果是一种名为 petrify 的异步控制器综合工具(www.cs.upc.edu/˜jordicf/petrify),目前正被许多大学用于研究和教学活动。该领域一篇经常被引用的论文也体现了这种影响:Petrify:一种用于操纵并发规范和异步控制器综合的工具,IEICE 信息与系统汇刊,1997 年 3 月。他在国际期刊上发表了许多论文:IEEE 集成电路和系统计算机辅助设计汇刊、IEEE 会议录、IEEE 计算机汇刊、IEEE VLSI 汇刊等。该领域的大部分贡献都已在该书的介绍中。
硅仍然是技术上最重要的材料之一,广泛应用于各种微电子和微机电系统 (MEMS) 设备和传感器。几十年的深入工业研究已经带来了一些最先进的硅材料加工路线,但有关其机械性能的一些细节仍然是个谜。这并不是因为缺乏努力,而是因为其复杂性。就变形机制而言,位错塑性、断裂和各种相变都是可能的,具体取决于加载速率、应力状态、尺寸、温度、杂质的存在等。本研究重点关注硅中的相变,这种相变发生在以压缩载荷为主的围压下 [1-3]。这使得仪器压痕成为诱导此类行为的流行选择 [4,5],我们在各种温度下都进行了这种测试。本研究的独特之处在于联合使用了两种事后显微镜技术:压痕的拉曼映射和聚焦离子束 (FIB) 加工提升的透射电子显微镜 (TEM)。这样做是为了试图更详细地了解不仅发生了哪些相变,而且了解它们在空间中的分布情况以及这种相变与压头下方局部应力状态的关系。在高温下,使用配备 800C 的 Hysitron PI88 原位 SEM 压痕和配备金刚石 Berkovich 尖端的原型高真空平台纳米压痕系统测试了具有 <001> 取向和 p 型掺杂的硅晶片,电阻率为 0.001-0.005 Ω-cm,相当于 1x1019 - 1x1020 cm-3 硼掺杂。沿着压痕的对角线准备提取件,从而将一个面和一个角一分为二。在减薄和转移到半网格之前,先沉积保护性铂。样品制备采用 FEI Versa 3D 双束和 EasyLift 操纵器(Thermo Fischer Scientific,希尔斯伯勒),并使用在明场中以 300keV 运行的 Technai F30 TEM 进行成像。图 1 显示了硅从室温到 450°C 的纳米压痕行为变化的摘要。其中,硬度最初随着温度升高到大约 150°C,然后开始稳步下降。这是一个相当有趣的观察结果,因为当性能由位错塑性介导时,硬度和屈服强度通常会随着温度的升高而降低 - 这表明在低温范围内其他行为占主导地位。这也体现在压痕的后期 SEM 成像中,因为在室温下会出现剥落,在 100°C 时会消失,然后在 200°C 时变成延性流动。剥落归因于卸载过程中晶格膨胀的相变。图 2 展示了一些关于解释这种硬度变化的变形机制变化的理解,其中显示了事后拉曼图和 TEM 图像。此处,室温拉曼图显示压头压痕下有一个强烈的相变区域,这从 TEM 成像中也可以看出来。当温度升高到 100°C 时,拉曼光谱显示从非晶态、R8 和 BC8 硅相的复杂混合物急剧转变为六方相和金刚石立方体相。事后 TEM 也显示相变区域的变化,特别是总相变材料的减少。在 200°C 时,拉曼光谱显示为金刚石立方体,含有少量六方材料。TEM 显示压痕下似乎以孪生塑性为主,几乎没有明显的相变材料。