今天,2月12日,CEST 09:30,分析师,投资者,媒体和其他有关方面被邀请参加Lime Lime首席执行官Nils Olsson和CFO Anders Hofvander的网络广播,将对已发布的报告和回答问题发表评论。
马铃薯 ( Solanum tuberosum L.) (2 n = 4 x = 48) 是人类消费量继大米和小麦之后的第三大重要粮食作物。马铃薯被视为欧洲和美洲部分地区的主食。2018 年,世界马铃薯总产量为 3.6817 亿吨,其中中国(9026 万吨)位居第一,印度(4853 万吨)紧随其后(FAOSTAT,2018 年)。世界人口将从现在的 77 亿增加到预计 2050 年的 97 亿,对粮食供应构成了巨大挑战(联合国,2019 年)。马铃薯易受到各种病原体、害虫和环境非生物胁迫的侵害。在气候变化情景下,情况正在恶化。在印度,主要马铃薯种植邦的平均马铃薯产量(占全国马铃薯产量的 90%)可能会在 2050 年代下降 2.0%,在 2080 年代下降 6.4%(Rana 等人,2020 年)。为了解决这些问题,常规育种在品种开发计划中发挥了关键作用,同时结合标记辅助选择,主要针对晚疫病、病毒和马铃薯胞囊线虫 - 世界各地的抗性品种,例如印度的 Kufri Karan(ICAR-CPRI 年度报告,2018-19 年)。后来,马铃薯转基因技术也得到了开发,以抵抗疾病(如晚疫病和病毒)、非生物胁迫(如高温和干旱)、害虫(如马铃薯胞囊线虫和马铃薯块茎蛾)、加工品质(如降低冷诱导甜度),但它们均未在田间应用。因此,随着测序技术的进步和马铃薯基因组序列的可用性(马铃薯基因组测序联盟,2011),有可能应用基因组学工具(如基因组编辑)来调节目标基因。基因组编辑是一种先进的基因组学工具,可通过基因敲除和插入/缺失诱变来改良作物(Hameed 等人,2018)。它允许在基因组中的特定位点发生双链断裂(DSB),并通过自然发生的 DNA 修复机制进行修复,即非同源末端连接 (NHEJ) 或同源重组 (HR)。过去,该系统早期由蛋白质引导的核酸酶促进,例如锌指核酸酶 (ZFN) 和转录激活因子样效应核酸酶 (TALEN)。但现在,人们的注意力转向了一种新的 RNA 引导核酸酶,称为成簇的规律间隔的短回文重复序列 (CRISPR) — CRISPR 相关 (Cas) (Nadakuduti 等人,2018)。与组装 CRISPR/Cas 相比,TALEN 和 ZFN 需要特殊的专业知识、更长的时间和更高的成本。事实上,据报道,CRISPR/Cas 在作物中的应用取得了巨大进展。在马铃薯中,CRISPR/Cas 已被证明可以改善块茎品质、抗病性(晚疫病和马铃薯 Y 病毒)、表型和其他性状(Dangol 等人,2019 年;Hameed 等人,2020 年;Hofvander 等人,2021 年)。本文介绍了 CRISPR/Cas 的现状、未来前景以及马铃薯面临的挑战。