有几种动机将重力理论扩展到爱因斯坦的一般相对论(GR)之外。所有试图用量子物理学调和该理论的所有尝试都以额外的场,高阶运动方程或高阶曲率不变性的形式引入偏差。例如,以骨弦理论的低能限制(在字符串理论中最简单)产生ω= - 1 brans-dicke理论而不是gr,这是标量张量理论的原型(并且ω是brans-dicke coupling)[1,2]。但是,研究重力理论的最引人注目的动机来自宇宙学。例如,数据最受数据偏爱的通用模型,即starobinsky inftion,包括对GR的量子校正。最重要的是,在基于GR的标准λCDM模型的领域中,缺乏对当今宇宙加速扩张的令人满意的理解:它要求人们引入一种惊人的宇宙学常数或另一种形式的Ad Hoc Dark Energy,其本质仍然难以置信[3]。在任何情况下,即使承认黑暗能量的存在仍然留下λCDM的其他问题,例如哈勃张力[4,5],对同样神秘的暗物质的要求以及困扰着宇宙学和黑洞物理学的奇异性问题。因此,研究重力理论以解决或减轻这些问题是合理的。修改GR的最简单方法是添加标量(巨大的)自由度,这导致了Bransdicke Gravity [6]及其标量张紧概括[7-10]。f(r)重力理论被证明是标量调整理论的子类,非常受欢迎,可以解释当前的宇宙加速度而没有暗能量([11],有关评论,请参见[12-14])。在过去的十年中,旧的Horndeski Gravity [15]进行了重新审视和研究(有关审查,请参见[16])。这类理论被认为是二阶运动方程式的最通用的标量张力重力,但随后发现,如果满足适当的退化条件,则更一般性的更一般的变性高阶标量表(DHOST)理论允许第二阶段的二阶方程(请参阅[17])。Horndeski和Dhost理论在其行为中包含任意功能,这使得方程非常繁琐,并且很难进行研究。多人事件GW170817/grb170817,[18,19]证实了以光速传播的引力波模式基本上排除了Horndeski理论,其具有最复杂的结构[20] [20] [20],但许多可能性(对应于动作中的四个免费)。因此,很难掌握这些理论及其解决方案的详细物理含义,许多工作必定仍与形式的理论方面相关,并寻求分析解决方案。当该理论的标量场的自由度φ的梯度是时代的[21-23]时,这种有效的流体描述是可能的。武装这些概念,可以将GR描述为重力的热平衡状态试图获得标量调节引力的物理直觉(包括可行的Horndeski理论),可以通过有效的脉动描述来解释它是富有成效的,其中(Jordan框架)方程将作为有效的EINSTEIN方程式和右手置于右手,以右手的方式写入,并以右侧的方式写入。耗散液[21 - 24]。在这种情况下,使用ECKART在耗散流体的第一阶热力学[25]中提出的三个本构关系[25],我们能够引入有效的“重力温度”,以及剪切和散装粘度粘度系数[24,26,27]。
有多种动机将引力理论扩展到爱因斯坦广义相对论 (GR) 之外。所有将这一理论与量子物理相协调的尝试都会以额外场、高阶运动方程或高阶曲率不变量的形式引入与广义相对论的偏差。例如,取弦理论中最简单的玻色弦理论的低能极限,得到 ω = − 1 布兰斯-迪克理论,而不是广义相对论,后者是标量张量理论的原型(ω 是布兰斯-迪克耦合)[1,2]。然而,研究替代引力理论的最有力动机来自宇宙学。例如,最受数据青睐的膨胀模型,即斯塔罗宾斯基膨胀,包括对广义相对论的量子修正。最重要的是,基于广义相对论的标准冷暗物质宇宙学模型无法令人满意地理解当今宇宙的加速膨胀:它需要引入一个令人惊奇的精细调节的宇宙常数或另一种形式的特设暗能量,而暗能量的性质仍然难以捉摸[3]。无论如何,即使承认暗能量的存在,冷暗物质的其他问题仍然无法解决,如哈勃张力[4,5]、对同样神秘的暗物质的要求,以及困扰宇宙学和黑洞物理学的奇点问题。因此,研究其他引力理论来解决或缓解这些问题至少是合理的。修改广义相对论最简单的方法是增加一个标量(大质量)自由度,这导致了 Brans-Dicke 引力[6]及其标量-张量推广[7-10]。 f(R) 类引力理论原来是标量张量理论的一个子类,它在解释当前没有暗能量的宇宙加速过程中非常流行([11],参见[12-14]的评论)。在过去的十年中,旧的 Horndeski 引力 [15] 被重新审视并进行了深入研究(参见[16]的评论)。这类理论被认为是最一般的标量张量引力,允许二阶运动方程,但后来人们发现,如果满足合适的退化条件,更一般的退化高阶标量张量 (DHOST) 理论可以允许二阶运动方程(参见[17]的评论)。Horndeski 和 DHOST 理论在其作用中包含任意函数,这使得场方程非常繁琐,研究起来也很困难。多信使事件 GW170817/GRB170817 [ 18 , 19 ] 证实了引力波模式以光速传播,这基本上排除了结构最复杂的 Horndeski 理论 [ 20 ],但仍存在许多可能性(对应于作用中的四个自由函数)。因此,很难掌握这些理论及其解决方案的详细物理意义,并且大部分工作必然局限于形式理论方面和寻找分析解决方案。
标量调节重力的一阶热力学是标量调节坟墓(包括可行的Horndeski)和耗散液之间的类比。假设引力标量场的梯度是定时的,并且以未来为导向,则有助于诸如消散流体之类的场方程,令人惊讶的是,它遵守Eckart Eckart的Fourier Law版本。然后,修饰的重力与一般相对性的收敛性类似于这种有效的液体对治疗平衡的方法,但是在相关方程式中,这种情况使情况变得复杂。这种形式主义提供了“重力温度”的概念和描述GR方法或其出发的明确方程式。在这项研究中,我们对这种类比及其局限性和前景提出了鸟类的视野。
在修饰的重力框架内,准静态和亚匹配近似值被广泛用于分析,旨在在后期识别与一致性模型的偏离。通常,假设时间导数相对于空间衍生物是亚分析,鉴于相关的物理模式是哈勃半径内的那些模式。实际上,根据重力电位和所涉及的物质领域的扰动,这些近似值下的扰动方程将减小为可拖动的代数系统。在这里,在F(r)理论的框架中,我们使用新的参数化方案调用这些近似值时,我们将重新访问标准结果,该方案使我们能够跟踪扰动方程中每个时间衍生术语的相关性。这种新方法揭示了在标准程序中获得的校正项。我们通过将两种方法的结果与两种知名玩具模型的完整数值解决方案进行比较:设计师F(R)模型和HU-Sawicki模型来评估这些差异的相关性。我们发现:i)可以将子马近似值安全地应用于量表0的线性扰动方程。06 h / mpc Lessimk Lessim 0。2 h / mpc,ii)在这个“安全区域”中,准静态近似值即使在某些情况下,即使在某些情况下,对于宇宙预算,即使黑能有显着促进宇宙预算,即使暗能对宇宙预算产生显着贡献,也可以对宇宙预算产生显着贡献,甚至有助于宇宙预算,即使在某些情况下,我们的新方法也比标准过程更好。,尽管对于研究案例,这一重大改进对线性可观察物的影响很小,但这并不代表我们方法的无效。相反,我们的发现表明,在更通用的修改重力理论(例如Horndeski)中,在这些近似值下得出的扰动表达式也应重新审视。