图1。点击编辑的概述和开发。a,单击编辑器的示意图(CE),它是由RNA程序编程的DNA nickase,DNA依赖性DNA聚合酶和ssDNA绑扎域组成的融合蛋白(例如,嗯,核酸内切酶; Huhe)与导向RNA(GRNA)配对。Click-DNA(clkDNA)模板是一种单链DNA寡核苷酸,它编码底漆结合位点(PBS),聚合酶模板(PT)和Huhe识别位点B,从709序列产生的系统生成树47序列47,描绘了Huains多样性的小型元素,该序列是47个序列。量表表示序列之间的分数相关性。c,与ssDNA分子共价磷酸酪氨酸加合物形成共价磷酸酪氨酸加合物的示意图,其中huhe结合了识别顺序以引发单点样共轭反应。d,逐步点击编辑机制,涉及:(1)DNA目标位点释放非目标链(NTS)3'基因组瓣,(2)NTS laps plap杂交与clkDNA PBS,(3)NTS-NTS-NTS-NTS-PBS连接与DNA依赖性DNA Polimentsion(4)nts-pbs intthers(3) clkDNA的编码PT,(5)新合成的3'和天然基因组5'襟翼之间的平衡,以及(6)5'-flap裂解,导致编辑结合。e,在HEK 293T细胞中的点击编辑转染的示意图,涉及CE质粒的共转染(Porcine Circovirus 2(PCV2)Huhe Huhe与NSPCAS9(H840A)融合,并从e.coli dna Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA Polymerase I(DNA))中, clkDNA和一个(或两个)GRNA质粒(S)。ngrna)针对非编辑链的目标编辑效率。f,g,使用DNMT1 GRNA和带有PBS13-PT12的clkDNA插入或读取突变(Indels)的 f,g, f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g, f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。 CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即f,g,使用PBS13-PT12编码A +3- 5 cag deletion(使用A +49 nick; Panel f)或rnf2 grna a +rnf2 grna a +rnf2 grna a +rnf2 gkdna A +3-5 clkDNA A +49-PT12替换(带有+5“ 2b”刻度;面板G)。CE1,CE(PCV2-NSPCAS9(H840A)-ECKLENOW),带有一个GRNA,以指导非目标链刻度; CE1.N2,CE1带有额外的grna来指导刻痕(即
†与Gokcen Eraslan(Eraslan.gokcen@gene.com)的对应关系摘要调节元素的设计在基因和细胞疗法中是关键的,其中DNA序列经过设计以驱动升高和细胞型特异性表达。然而,没有可靠的指标和易于使用的软件的合成DNA序列的系统评估仍然具有挑战性。在这里,我们介绍了基于多样性,基序和K-MER组成,与内源序列的相似性以及具有预测性和基础模型的筛选的特征,该框架是一种评估合成DNA元素的Python框架。测谎仪是评估合成调节序列的第一种工具,在治疗干预措施方面可以更快地进展并提高我们对基因调节机制的理解。关键字:序列设计,合成生物学,机器学习,序列建模,调节基因组学
摘要 虚拟现实 (VR) 技术因其能够为用户提供沉浸式和交互式体验的能力而成为脑机交互和神经科学研究的有前途的工具。作为一种无创监测大脑皮层的强大工具,脑电图 (EEG) 与 VR 相结合为测量这些体验中的大脑活动提供了一个激动人心的机会,从而深入了解认知和神经过程。然而,传统的基于凝胶的 EEG 传感器与 VR 耳机不兼容,而且大多数使用刚性梳状电极的新兴 VR-EEG 耳机在长时间佩戴后会感到不舒服。为了解决这一限制,我们基于导电聚(3,4-乙烯二氧噻吩)聚苯乙烯磺酸盐/三聚氰胺 (PMA) 创建了柔软、多孔且与头发兼容的海绵电极,并通过定制的柔性电路将它们集成到 VR 耳机上,以便在执行 VR 任务期间进行多通道 EEG。我们的 PMA 海绵电极可以在 VR 耳机带自然施加的压力下变形,通过头发与头皮皮肤接触。特定接触阻抗始终低于 80 k Ω ·cm 2,即使在多毛部位也是如此。我们通过在无毛部位记录闭眼时的阿尔法节律来展示我们的 VR-EEG 耳机的功能
大多数情况下,精神疾病是轻微的。远离并致电您的医生或医疗保健提供者。• 如果患处变红或变软,并在 24 小时后(第 1 天)开始恶化。• 如果您担心事故发生几天后仍未消失。• 如果您接种了强生疫苗并出现以下症状:头痛、背痛、背部问题、紧张、腹痛、呼吸急促、腿抽筋、皮肤上出现黄斑(瘀点)或新的皮疹。
流行的反疫苗推文:“自然免疫... “与接种疫苗相比,疫苗接种能提供更强有力、更持久的 [COVID] 感染保护。”https://t.co/ZasY96pg3i ; 海地没有为其公民接种疫苗,目前的疫苗接种率为 1.4% — 但该国的新冠死亡率却是世界上最低的 — 很奇怪,是吧?https://t.co/gIZEPW733R ; “接种两剂 COVID 疫苗 8 个月后,接种疫苗者的免疫功能低于未接种疫苗者”。根据欧洲医疗机构的说法,“频繁接种加强针可能会对免疫反应产生不利影响”https://t.co/NoVN4PdSi3 ; 到 2 月底,新西兰已为所有成年人口接种了疫苗(总体为 83%)。然而,尽管“”室内戴口罩的规定,他们的新冠病例率却是地球上最高的。现在将再次收紧限制。https://t.co/TdNPR2KtWB ; “我不会让加拿大告诉我做什么,不吃什么。”费城费城人队捕手 JT Realmuto 因不遵守加拿大的疫苗接种规定并前往加拿大与多伦多蓝鸟队比赛而被罚款 250,000 多美元。https://t.co/bJp9vuhn9r
丙型肝炎病毒 (HCV) 是黄病毒科中的单链 (ss) RNA 丙型肝炎病毒。目前的 HCV 治疗存在持续病毒应答率不足、耐药性快速出现等问题,特别是对于感染基因型 1 HCV 的患者。(1,2)我们合成了新的吡唑酰胺衍生物 (3) 作为抗丙型肝炎病毒药物,并研究了抑制机制(图 1)。活性最高的化合物抑制 Huh 5-2 细胞中的亚基因组 HCV 复制子 1b,EC50 为 6.7 μM,对 HCV 1b 的选择性指数为 23。命中化合物 1 不靶向 HCV NS5B 或 HCV IRES 介导的翻译;对 1 的抗 HCV 活性机制的评估表明,它抑制了 HCV 诱导的 COX-2 mRNA 和蛋白质表达,在 COX-2 启动子连接的荧光素酶报告基因检测中的 IC50 为 3.2 μM。我们的数据表明,吡唑酰胺衍生物通过在转录和翻译水平上靶向 COX-2 而充当抗 HCV 药物。这些结果为这种新型化学类 HCV 抑制剂的命中优化提供了强有力的基础。(1)Tan, SL, Pause, A. 等人。Nat. Rev. Drug. Disc. 2002, 1, 867-881。(2)Barreca, ML, Manfroni, G. 等人。J. Med. Chem. 2013, 56, 2270-2282。(3)Manvar, D., Pelliccia, S. 等人。Eur. J. Med. Chem. 2015,90,497-506
器官芯片 (OOC) 是一种基于微流控的细胞培养装置,其中包含连续灌注的腔室,其中有活细胞,用于模拟组织和器官水平的生理学 ( Bhatia and Ingber,2014;Ahadian 等人,2018)。OOC 的开发源于人们认识到传统的二维静态细胞培养方法无法模拟细胞在体内所处的环境 ( Ryan 等人,2016;Duval 等人,2017)。微流控技术通过在微观层面操纵流体,提供了一种模拟时空化学梯度、动态机械力和关键组织界面的方法。已经开发出可以重现人类肺(Huh et al., 2010)、心脏(Maoz et al., 2017)、胃(Lee KK et al., 2018)、肠(Kim et al., 2016)、肝(Weng et al., 2017)、肾(Sateesh et al., 2018)、血管(Wang et al., 2015)等复杂生理微环境关键方面的 OOC 系统。此外,已经提出了多器官芯片或身体芯片系统(Sung et al., 2019;Zhao et al., 2019a)。 OOC 平台已在许多生物医学领域显示出应用潜力,例如基础生理和药理学研究( Zhang and Radisic,2017 ; Zhang et al.,2018a )。
14:00 Roberta Stoica、Mihai Radu 和 Beatrice Mihaela Radu:低能加速质子诱导体外血脑屏障模型的细胞毒性、遗传毒性和功能变化 14:20 Viorel Ovidiu Ciobotaru、Călin Mircea Rusu 和 Beatrice Mihaela Radu:一种从共聚焦显微镜图像中自动检测单个细胞的新方法:对脑微血管内皮细胞的初步研究 15:40 Cristina Elena Staicu、Florin Jipa、Anca Bonciu、Călin Mircea Rusu、Emanuel Axente、Beatrice Mihaela Radu 和 Felix Sima:用于血脑屏障应用的新型聚合物材料和感光玻璃的研究 15:00 Florin Zamfirache 和 Beatrice Mihaela Radu:低强度经颅电刺激 (tDCS) 与其他治疗方法相结合在实验和临床中的应用抑郁症 15:20 Cătălina Lumpan、Beatrice Mihaela Radu、Carmen Strungaru 和 Livia Petrescu:快速区分情绪的形态判别器 15:40 Andrei C. Miu、ştefania Crişan、Simina Pişur、Alexandra Huh、Marius Susu、Róbert Balázsi、Gal Sheppes、Seth D. Pollak、Aurora Szentágotai- Tătar:儿童虐待中情绪调节的神经标记 16:00 讨论
7ovul:抓up [o Pupiliz vm 7ovul:hill [lssp [ljouvsvn` kltvuz [yh [yh [pvu tpzpvuz kl] lsvwlk i`5(:( tlz ljouvsvnplz:whjl? Soution:HAL 7OL 7OVUL:Hin Huk Jvun [puv] h
是否会导致皮疹、肝炎或结肠炎,具体取决于皮肤、肝脏还是肠道受到侵袭( Marin-Acevedo 等人,2019 年)。因此,肿瘤学的一大挑战是预测哪些新的免疫治疗药物对患者危害太大。这通常在动物模型中进行检查,但由于它们的免疫系统与人类免疫系统不同,因此很难可靠地预测毒性( Zschaler 等人,2014 年)。现在,在 eLife 上,Nikolce Gjorevski(罗氏公司)、Lauriane Cabon(罗氏公司)及其同事(包括波士顿 Emulate Inc 的 Jordan Kerns 和 Chaitra Belgur 作为共同第一作者)报告了体外模型如何帮助 T 细胞双特异性抗体免疫疗法绕过这一问题( Kerns 等人,2021 年)。 T 细胞双特异性抗体 (或 TCB) 可以识别并结合肿瘤表面的“抗原”蛋白,以及免疫“T 细胞”显示的受体:通过使两种类型的细胞更接近,该过程有助于激活 T 细胞并使其杀死目标。然而,TCB 结合的抗原并不总是癌细胞独有的。识别与肿瘤共享抗原的非癌细胞(称为靶向、脱肿瘤效应)可导致正常细胞受损( Labrijn 等人,2019 年;图 1 )。预测哪些正在临床开发中的 TCB 会导致这种不良毒性是肿瘤学中的一个重要挑战。为了解决这个问题,Kerns 等人。首先利用肺芯片模型(Huh 等人,2010 年)——一种在模拟体内条件下生长的系统——来预测对 TCB 的毒性。这个“微型器官”暴露于