加入编号:20245317617650资料来源标题:国际电子商业会议(ICEB)缩写的资料来源:Proc。int。conf。电子。巴士。(ICEB) Volume: 24 Part number: 1 of 1 Issue title: Proceedings of the International Conference on Electronic Business: AI-Generated Content and Human-AI Collaboration, ICEB 2024 Issue date: 2024 Publication year: 2024 Language: English ISSN: 16830040 Document type: Conference proceeding (CP) Conference name: 24th International Conference on Electronic Business, ICEB 2024 Conference date: October 24, 2024 - October 28, 2024 Conference地点:中国会议守则:204903赞助商:ASI;等。; Icebnet.org;国际电子业务杂志;商业与管理杂志; UI出版商:国际电子商业联盟摘要:程序包含70篇论文。讨论的主题包括:有关与同时映射的电子商务实时流媒体进行冲动购买的系统文献综述;电子商务平台中的成就游戏范围的措施:一项涉及在线购物节的实证研究; AI产品管理人员需求研究 - 基于中国市场招聘信息的分析;人工情报代理人作为团队负责人:对团队气候和团队效果的影响的研究;通过实时流媒体增强电子商务销售:现场流媒体人格特质的观点;致电镜头还是效仿?摘要类型:(编辑摘要)页面计数:715数据库:Compendex数据提供商:工程村编译和索引术语,版权所有2025 Elsevier Inc.从领导力参与的角度研究了人工智能科学协作网络的演变;以及虚拟偶像和虚拟流媒体的比较:从设计特征的角度来看。
摘要 本研究使用数据包络分析 (DEA) 开发了一个全面的框架,以评估各个部门 AI 应用的生态效率。通过以输出为导向的 DEA 模型,我们评估 AI 系统如何平衡性能效益与环境影响,并结合多项绩效指标和环境指标。该研究分析了医疗保健、金融和工业部门的数据,使用基准数据和环境评估来确定可持续 AI 实施的最佳实践。预期结果将表明该框架有效地识别了生态高效的 AI 实践,同时强调了数据可用性和不断发展的技术格局的局限性。该研究将有助于从理论上理解 AI 生态效率和实际决策,为组织提供在 ESG 参数内优化 AI 实施的见解,最终推进可持续的 AI 发展实践。关键词:生态效率、人工智能、数据包络分析、ESG。
引言近年来,金融业遇到了一种普遍存在的挑战,即漂绿行为。漂绿行为是一种夸大或歪曲公司对环境影响的做法,以给人留下公司比实际更注重环保的印象 (Huang & Chen, 2015)。当环境、社会和治理 (ESG) 报告等正式公共信息加剧信息不对称并增加市场混乱的风险时,就会发生这种情况 (Liu et al., 2024)。夸大其词是漂绿行为的一种常见形式,事实证明,它通过扭曲可持续发展目标的实现和评估来阻碍可持续发展目标的实现 (Cojoianu et al., 2020)。这通常表现为使用过于积极的语言来描述公司的环境、社会或治理绩效,而没有提供足够的支持数据或证据。因此,检测和解决 ESG 报告中的夸大其词至关重要。人工智能 (AI) 正在塑造世界,尤其是像 ChatGPT 这样的生成式人工智能 (GenAI) 的快速发展。金融领域的一些研究已经开始利用人工智能来解决 ESG 报告中的问题。例如,一些研究比较了传统和人工智能驱动的 ESG 评级 (Hughes 等人,2021)。一些研究调查了人工智能对漂绿和可持续发展报告的影响 (Moodaley & Telukdarie, 2023)。Yang 等人 (2021) 发现 ESG 披露降低了公司债券信用利差,降低了风险并增强了投资者信心,而 Biju 等人 (2023) 使用 MAXQDA 软件将 ESG 的情绪得分与漂绿的看法联系起来。这些研究表明了在分析 ESG 报告中应用人工智能的可能性和潜力。因此,本研究受到启发,充分利用人工智能,尤其是 GenAI,来评估 ESG 报告中的夸大行为 (Jain 等人,2023)。尽管先前的研究已经研究了审查和评估 ESG 报告的各种技术,但识别夸大断言的难度仍然没有得到充分研究,尤其是在使用最先进的人工智能技术时。此外,即使公司可能在其 ESG 报告中使用“极端”、“完整”或“最高”等形容词,但这并不总是意味着他们夸大了他们的成就;事实上,一些公司可能在这方面表现出色。因此,仅依靠 ESG 报告中的术语无法彻底确定公司是否夸大了他们的主张。GenAI 的优势在于能够通过分析上下文细节来辨别是否有合理的理由怀疑夸大。本研究旨在通过利用 GenAI 来检测 ESG 报告中的夸大描述,从而弥补这一差距,从而更准确、更稳健地评估企业可持续发展绩效。我们采用三种不同的即时工程策略,即零样本、少量样本和思路链 (COT) 来分析一组 ESG 报告。此外,我们还将该方法与传统文本分析技术和人类智能进行交叉验证。这