神经辐射场(NERFS)在各种应用程序中都表现出有希望的结果,已获得流行。据我们所知,现有作品并未明确对训练相机姿势的分布进行建模,或者因此是三角测量质量,这是影响重建质量的关键因素,它可以追溯到经典视觉文献。 我们用Provernf缩小了这一差距,该方法是将每个点的出处(即可能可见的位置)建模为NERFS作为随机场的方法。 我们通过将隐式最大似然估计(IMLE)扩展到具有优化目标的功能空间来实现这一目标。 我们表明,在NERF优化过程中对每点出处进行建模丰富了模型,并提供了三角剖分的信息,从而改善了新型视图合成和在针对竞争性基线的具有挑战性的稀疏,无约束的视图设置下的不确定性估计。据我们所知,现有作品并未明确对训练相机姿势的分布进行建模,或者因此是三角测量质量,这是影响重建质量的关键因素,它可以追溯到经典视觉文献。我们用Provernf缩小了这一差距,该方法是将每个点的出处(即可能可见的位置)建模为NERFS作为随机场的方法。我们通过将隐式最大似然估计(IMLE)扩展到具有优化目标的功能空间来实现这一目标。我们表明,在NERF优化过程中对每点出处进行建模丰富了模型,并提供了三角剖分的信息,从而改善了新型视图合成和在针对竞争性基线的具有挑战性的稀疏,无约束的视图设置下的不确定性估计。
自己。人工智能这一概念由约翰·麦卡锡在1956年多特蒙德会议上首次提出,自本世纪上半叶以来,它就被公认为计算机工程领域的重要研究领域之一,并毫无争议地成为技术的驱动力,并一直延续至今。人工智能具有学习、做出智能预测、解决复杂问题、适应多变条件、适应不同的人类语言和经验等特性,这些都可以算作人工智能的定义,人工智能也被纳入对教育培训过程的直接贡献阶段,特别是在教育信息管理方面。事实上,如今人工智能早已进入课堂,学生、教师或家长甚至还未来得及说一声“欢迎”,它就以“智能、自适应或个性化学习系统”的名义,将世界各地的高中和大学教育带入了一个全新的维度。这个维度延续了收集和分析每个学生产生的“大数据”的过程,这些数据现在是不可能管理和获取的。总而言之,可以说人工智能对教育的贡献有两点:一是在教育管理阶段,向学生和教育工作者管理和呈现信息;第二,在教学角色阶段,直接参与学习和教学过程。本研究从三个标题和三个问题来探讨人工智能在教育中的应用,并通过“人工智能到底是什么?”这一问题来回答智能及相关概念。带着问题;人工智能将如何助力教育?“人工智能将如何改善教育?”带着问题;最后一节“人工智能在教育领域有哪些应用?”议题下将介绍在教育培训领域可以使用的人工智能应用。人们认为这项研究将通过在教育的标题下以一般框架呈现人工智能主题,并揭示教师和学生如何使用人工智能,为该领域做出贡献。关键词:教育中的人工智能、智能、大脑、人工智能、专家系统。抽象的。人工智能的概念由约翰·麦卡锡在1956年多特蒙德会议上首次提出,自本世纪上半叶以来,人工智能被公认为技术驱动力之一,无疑是计算机科学最重要的研究领域之一。人工智能具有学习、做出智能预测、解决复杂问题、适应不断变化的条件、适应不同的语言和经验等特殊定义,它直接在教育和培训过程,特别是在教育信息管理方面发挥着贡献作用。事实上,人工智能早已被引入课堂环境,在学生、教师或家长尚未表示“欢迎”之前,它就以“智能、适应性或个性化学习系统”。这个维度延续到每个学生形成的“大数据”收集和分析,而管理和访问这些数据几乎是不可能的。简而言之,可以用两种形式来表达人工智能对教育的贡献;第一种方式是在教育管理阶段通过信息管理和向教师和学生呈现;第二种是教学角色,直接参与学习和教学过程。在本研究中,人工智能在教育中分为三个主题和三个问题进行分析。第一部分通过“什么是人工智能?”的问题讨论人工智能和相关概念。第二部分试图通过询问“人工智能如何发展教育?”来发现人工智能如何为教育做出贡献。在最后一部分,通过“人工智能在教育教学中的实践是什么”来分析可以/正在用于教育和教学的人工智能应用。